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1 Introduction 

LLNL hydrologic source term modeling at the Cambric site (Pawloski et al., 2000) showed that 
retardation of radionuclide transport is sensitive to the distribution and amount of radionuclide 
sorbing minerals. While all mineralogic information available near the Cambric site was used in 
these early simulations (1 1 mineral abundance analyses from UE-5n and 9 from RNM- l), these 
older data sets were qualitative in nature, with detection limits too high to accurately measure 
many of the important radionuclide sorbing minerals (e.g. iron oxide). Also, the sparse nature of 
the mineral abundance data permitted only a hypothetical description of the spatial distribution 
of radionuclide sorbing minerals. Yet, the modeling results predicted that the spatial distribution 
of sorbing minerals would strongly affect radionuclide transport. Clearly, additional data are 
needed to improve understanding of mineral abundances and their spatial distributions if model 
predictions in Frenchman Flat are to be defensible. 

This report evaluates new high-resolution quantitative X-Ray Diffraction (XRD) data on mineral 
distributions and their abundances from core samples recently collected from drill hole ER-5-4. 
The total of 94 samples from ER-5-4 were collected at various spacings to enable evaluation of 
spatial variability at a variety of spatial scales as small as 0.3 meters and up to hundreds of 
meters. Additional XRD analyses obtained from drillholes UE-Sn, ER-5-3, and U-1 lg-1 are 
used to augment evaluation of vertical spatial variability and permit some evaluation of lateral 
spatial variability. A total of 163 samples are evaluated. 

Recently, Los Alamos National Laboratory (LANL) and IT Corporation provided a detailed 
analysis of lithology and mineral distribution based on XRD, X-Ray Fluorescence (XRF), 
Scanning Electron Microscopy (SEM), petrography, and electron microprobe data from ER-5-4 
as well as several other drill holes (Warren et al., 2002). These results provide the foundation for 
our geostatistical analysis of the XRD data. The origin of the XRD data and procedures used to 
obtain it are described in Chapter 2. The remainder of this report analyzes the spatial variability 
of the XRD data using geostatistical techniques. An important goal is to develop acceptable 
models of heterogeneity of mineral abundances and distribution coefficient (Kd) that can be 
incorporated into reactive transport modeling at hydrologic source term (HST) and Corrective 
Action Unit (CAU) scales. 

Before spatial variability can be quantitatively characterized using variograms and stochastic 
simulation algorithms, the frequency distributions and spatial variability of the data must be 
examined for deviations from the normality and stationarity assumptions employed in 
geostatistics. This preliminary data analysis is described in Chapter 3. While the emphasis of 
our statistical analysis is placed on radionuclide sorbing minerals included in a mechanistic 
sorption model (iron oxide, smectite, calcite, zeolite, and micdillite), data regarding other 
primary and secondary minerals are also evaluated. This is done to 
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evaluate whether statistically significant correlations can be made between 
radionuclide sorbing and non-sorbing minerals (Section 3.4), and 

compare our mineralogic interpretations and geostatistical analyses of spatial 
variability of sorbing mineral abundance with the alluvial layering interpretations by 
Warren et al. (2002) (Section 3.5). 

Because the mineralogic spatial variability is in part attributed to geology, consideration of 
geologic processes such as alluvial layering described by Warren et al. (2002) needs to be 
integrated into the geostatistical analysis. 

This report also evaluates the mineral abundance data from the perspective of modeling 
radionuclide transport using particle tracking. In Chapter 4, the XRD data are converted to 
distribution coefficients (Kd) based on a mechanistic sorption model developed at LLNL 
(Zavarin and Bruton, 2000a; 2000b; Zavarin et al., 2002).’ Frequency distributions and depth 
profiles of Kd are evaluated for a variety of radionuclides. 

Chapter 5 conducts variogram analyses on both mineral abundance and Kd data. The mineral 
abundance data are categorized into “mineralization zones,” where mineral abundance appears 
uniform in mean and variance, or, statistically “stationary” as described in Chapter 3. Within the 
mineralization zones, all of the sorbing and non-sorbing minerals except for hematite exhibit 
mostly random spatial variation. Spatial continuity of Kd is evident in variogram analyses and is 
primarily associated with variations in mineral abundance between different mineralization 
zones. Variogram models for Kd are developed for both vertical and lateral directions. 

Chapter 6 employs the results of the analyses of spatial variability in the previous chapters to 
develop methods for simulating the spatial variability of mineral abundances and Kd. One 
approach is based on the concept of “chemofacies,” where alluvial zones or layers have 
relatively uniform mean values of sorbing minerals. The three-dimensional geometry of the 
chemofacies are partly associated with the alluvial layers interpreted by Warren et al. (2002). 
The other approach employs the geostatistical concept of random fields and is applicable to Kd 

only. For most radionuclides, spatial variation of Kd throughout large portions of Frenchman 
Flat could be realistically simulated by Gaussian random fields. The exceptions are 
radionuclides such as Ca and Sr that are very sensitive to clinoptilolite abundance, which varies 
significantly between central and northern Frenchman Flat. Alternatively, a hybrid zonal and 
random field approach is demonstrated for generation of random fields of Kd for Ca and Sr. 

Chapter 7 summarizes the interpretations and conclusions of the report. Chapter 8 provides 
references. 

’ Linlung a mechanistic sorption model to a K d  model was described in a recent report (Zavarin, 2002). 
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Figure 1.1 provides a diagram illustrating the approaches taken in analyzing spatial variability of 
sorbing mineral abundances and Kd in Frenchman Flat, given the available data. The top of the 
figure illustrates hypothetical depth profiles of the mineral abundances. Based on interpretation 
of zonal variations of mean mineral abundances, mineralization zones are identified as indicated 
by the colored regions. The alluvial layering interpretation by Warren et al. (2002), which is 
based on a more comprehensive geologic interpretation, shows some similarities and differences 
compared to mineralization zones in defining unit boundaries. The Kd random field approach, 
shown at left, treats Kd as a random variable throughout Frenchman Flat alluvium, independent 
of mineralization zone. Based on the component additivity approach, Kds are generated for each 
radionuclide (middle left), spatial variability of Kd within Frenchman Flat is modeled with 
variograms (bottom left), and stochastic random fields based on Gaussian random fields are be 
developed (bottom middle). 

In the chemofacies approach, variogram analysis is applied to assess spatial variability within 
mineralization zones (middle right). In this application, only hematite exhibited measurable 
spatial correlation within a mineralization zone, with a vertical range of spatial correlation of 
about 5 m. Therefore, the spatial variation of mineral abundances and K d  within mineralization 
zones is, for practical purposes, entirely attributed to random variation. Therefore, zones which 
have relatively constant zonal mean abundances of sorbing minerals - chemofacies - will also 
have relatively constant K d S .  Because the chemofacies are related to the alluvial layering 
interpretation by Warren et al. (2002), three-dimensional models of sorbing mineral abundance 
or Kd could be developed using the geometric framework of alluvial layering (not shown). 
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Figure 1.1 Diagram illustrating Kd random field and chemofacies approaches to addressing 
spatial variability of mineral abundances and Kd in the context of modeling reactive transport of 
radionuclides in Frenchman Flat. 
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2 Mineral Abundance Data Included in the 
Geostatistical Analysis 

The geostatistical evaluation of mineral distribution in Frenchman Flat alluvium is based on 
recent quantitative X-Ray Diffraction (XRD) data collected on alluvium from four wells: 
ER-5-4, ER-5-3, UE-Sn, and U-1 lg-1 (Figure 2.1). Sampling of well ER-5-4 was performed for 
the specific purpose of evaluating spatial variability of mineral abundance, with sampling 
intervals ranging from 0.3 to 10 meters and spanning nearly 1000 meters (Figure 2.2). Sampling 
intervals were chosen to enable evaluation of both small and large scale mineral spatial 
variability. Samples from well UE-5n were included in our analysis to evaluate lateral 
variability (UE-5n is located 477 meters from ER-5-4). UE-5n alluvium samples were collected 
in 1976 and stored at the NTS; small sub-samples were taken for quantitative XRD analysis. 
Samples from wells ER-5-3 and U-1 lg-1 were also included in our analysis to compare 
mineralogies of northern and central Frenchman Flat. Samples from ER-5-3 were collected as 
part of the UGTA program in FYO1. U-1 lg-1 core was collected in 1971 and stored at the NTS; 
small subsamples were taken for quantitative XRD. 

The quantitative XRD data discussed in this report were collected at Los Alamos National 
Laboratory and analyzed using the computer code FULLPAT (Chipera and Bish, 2001). 
Detailed descriptions of the data are reported in Warren et al. (2002) and will not be repeated 
here. While older XRD data exist for wells UE-Sn, U-1 lg-1, and several other wells in 
Frenchman Flat, they were not included in our analysis. There are several issues that make 
inclusion of older XRD data problematic. First, many of the older data sets report mineral 
abundances for only a select number of minerals. Second, detection limits of the older data sets 
were, in all cases, much higher. Third, as pointed out in Warren et al. (2002), the data analysis 
methodology used to analyze older data sets was less rigorous, resulting in inconsistencies 
between recent quantitative XRD and older “qualitative” XRD data (see Warren et al., 2002 
discussion of UE-5n data). To simplify the statistical interpretation of XRD data, we relied 
solely on recent quantitative XRD data reported in Warren et al. (2002). 

It is important to distinguish the difference in approach used here and in Warren et al. (2002). In 
our analysis, we rely solely on the geostatistical evaluation of mineralogic abundance data based 
on recent quantitative XRD analyses. The interpretation of alluvial layering by Warren et al. 
(2002) was based on a combination of XRD, x-ray fluorescence (XRF), scanning electron 
microscopy (SEM), electron microprobe, and petrographic analyses, as well as historical data. 
Our statistical analysis is focused on sorbing minerals included in our mechanistic sorption 
model (iron oxide. smectite, illite/mica, zeolite, and calcite). Our approach should, therefore, be 
distinguished from that of Warren et al. (2002) in that it is not focused on alluvial layering but is, 
instead, focused on spatial variability of sorbing mineral abundances from the perspective of 
conducting simulations of reactive transport. Nevertheless, the interpretations of alluvial layers 
and sorbing mineral abundances share much in common, as will be discussed in various sections 
of this report. 

In this report, we did not directly integrate the three component model described in Warren et al. 
(2002) into our analysis of spatial variability of mineral abundances. The three component 
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model (Le. division of alluvium into crystals (phenocrysts), lithics/pyroclasts, and reactive 
matrix) and an index of reactive mineral accessibility were used in Warren et al. (2002) to assess 
whether reactive minerals may not be accessible to fluids and, thus, not contribute to 
radionuclide sorption. While these data were not included directly in our model, the information 
provided regarding sorbing mineral accessibility is consistent with recent mechanistic sorption 
model validation experiments (Zavarin et al., 2002). In these validation experiments, it was 
found that iron oxide reactivity is much lower than predicted based on batch single mineral 
laboratory studies. The information provided in Warren et al. (2002) suggests that the reduced 
reactivity can be understood based on the three component model and reactive mineral 
accessibility. The iron oxide (referred to in X R D  data tables as hematite) abundance reported in 
quantitative XRD analyses, in reality, includes magnetite, maghemite, limonite (goethite), 
hematite, and hydrous ferric oxide minerals. Warren et al. (2002) found that the majority of the 
iron oxide (from petrographic analyses) occur as altered magnetite phenocrysts within the matrix 
and the lithics. The size of the magnetite phenocrysts, based on petrographic thin sections (see 
Figure 36 of Warren et al. (2002)), suggests that the surface area of these iron oxides will be 
quite low (calculated to be -0.02 m2/g based on simple cubic mineral particle assumption). This 
fraction of iron oxide should not contribute significantly to radionuclide retardation simply 
because the reactive surface area is too small to be significant (particularly in light of the low 
iron oxide mineral abundances of this alluvium). Thus, the dominant fraction of iron oxide 
would not be expected to contribute significantly to radionuclide retardation. Based on the 
petrographic analyses, the most accessible and high surface area iron oxide fraction (limonite in 
the matrix component) comprises only 3.5% of the total iron oxide. This is in general agreement 
with SEM-based evaluation of iron oxide accessibility. This is also in general agreement with 
our mechanistic sorption model validation experiments which suggested that the average iron 
oxide surface area must be in the range of 0.2 m’/g, a surface area much lower than that observed 
for synthetic high surface area iron oxides (e.g. 50 m2/g for goethite). By using the adjusted low 
reactive surface area of iron oxides, we are indirectly accounting for the complex iron oxide 
mineralogy suggested in Warren et al. (2002). 
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which mineralogic abundance data were retrieved. UE-5n and ER-5-4 are 
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northern Frenchman Flat. Figure from Warren et al. (2002). 
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Figure 2.2 Comparison of XRD data sample depths for wells ER-5-4, ER-5-3, 
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3 Preliminary Data Interpretation 

The overall goal of this study is to understand and characterize the spatial variation of sorbing 
minerals in Frenchman Flat alluvium, with consideration for the potential impact on reactive 
transport of radionuclides.’ To achieve this goal requires an effort to ensure that plausible 
statistical models are used to characterize the spatial variation of minerals. The statistical models 
must also be plausible from a geological perspective. The spatial variation of mineral abundance 
cannot be entirely attributed to random processes. Geologic processes such as alluvial fan 
progradation, commingling, provenance (origin and source of the rock), and in-situ alteration 
dictate the spatial distribution of minerals. Nonetheless, analysis of spatial variation of mineral 
abundance with respect to random variable concepts will be useful for modeling field-scale 
transport. 

In this chapter, we interpret the XRD data on mineral abundances from drillholes ER-5-4, ER-5-3, 
UE-5n, and U-1 lg- 1 in Frenchman Flat using univariate and bivariate statistics as a preliminary 
step to performing geostatistical analysis of spatial variability of mineral abundances and K d  (see 
Chapters 5 and 6 ) .  The purpose of the preliminary data interpretation is to understand the 
statistical characteristics of the data that will affect variogram analysis discussed in Chapter 5. 
Before variogram analysis can begin, the topics of “stationarity” and normality must be addressed. 

Geostatistical analyses typically employ the concepts of statistical stationarity of the mean or 
variance and normality in the frequency distribution. For clarification, stationarity means that 
the statistical properties (such as the mean and variance) of a random variable (such as mineral 
abundance) do not vary in space (within the region of interest). From a geological perspective, a 
geologic attribute could be considered statistically stationary if its mean value and degree of 
fluctuation is uniform through the region of interest. For example, the mean and variance of 
particle size could be assumed stationary in a poorly-sorted layer, but non stationary in a fining- 
upward layer. Stationarity of the mean or “first-order stationarity” occurs if the local mean does 
not depend on location (e.g., vertical position in a layer). Second-order stationarity occurs if 
both the mean and spatial covariance do not depend on location. In geostatistics, another form of 
stationarity called “intrinsic stationarity” is often assumed, where the local mean can vary 
smoothly in space but the variance remains stationary. The concept of intrinsic stationarity is 
useful in applications where the data exhibit fluctuations about a trend. 

A normal (Gaussian) frequency distribution is usually assumed in a geostatistical analysis, not 
only because the normal distribution is a common model for random processes, but because the 
normal distribution is characterized entirely by the mean and variance (no third or higher order 
statistics are needed). Successful application of geostatistical techniques greatly depends on the 
appropriateness of the stationarity and normality assumptions. Therefore, it is good practice to 
carefully examine the data for nonstationarity in the mean (e.g., trends) and variance (e.g., spatial 
variations in the degree of fluctuation) and deviation from normality before carrying out the 

’ In this report, we define sorbing minerals based on the surface complexatiodion exchange model developed for 
near-field hydrologic source term modeling. In this model, sorbing minerals include: iron oxide, smectite, 
illite/mica, zeolite (clinoptilolite), and calcite. While other minerals may, in fact, sorb radionuclides, we use the 
term “sorbing minerals’’ strictly to refer to five minerals included in our sorption model. 
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variogram analysis. Otherwise, the variogram analysis may produce spurious results that 
introduce artifacts or mask out valuable information in the data. 

Twenty-one different minerals were identified in the high-quality XRD data for drillholes 
ER-5-4, ER-5-3, UE-Sn, and U-1 lg-1 in Frenchman Flat (Warren et al., 2002). We present these 
data in several different formats to address several opening questions about mineralogic spatial 
variation: 

0 Do the mineral abundances vary with depth and location in Frenchman Flat? 

0 How much of the spatial variation can be characterized by random processes, and 
how much of the spatial variation must be attributed to ordered geologic processes? 

Do the sorbing mineral abundances show significant correlation with non-sorbing 
minerals? 

To address the first question, we plot the abundance of each mineral (mass percent based on 
XRD) on a log scale versus depth. These plots can be used to evaluate whether spatial variation 
of mineral abundances is in part related to random or “micro-scale” variability, and in part 
related to geological conditions, such as distinct zones or “layers” (Section 3.1). To address the 
second question, data are plotted as histograms and normal probabilities on both linear and log 
scales (Section 3.2). The frequency distributions (histograms) and normal probability plots call 
attention to different zones or layers - the non-random components of variation (Section 3.3). 
Finally, to address the third question, scatterplots are used to examine correlation between 
abundances of different minerals (Section 3.4). Statistical tests are used to determine whether 
correlations are significant between abundances of the sorbing minerals and different sorbing or 
non-sorbing minerals. 

The combined interpretation of the mineral abundance versus depth, the linearly and 
logarithmically-scaled frequency distributions and normal probabilities, and the mineral abundance 
correlations are used to identify zones where the mean abundances of individual minerals appear 
stationary. Within these zones, the variogram analysis can be performed with more confidence 
because first-order stationarity and normality assumptions are appropriate. The identification of 
statistically stationary mineralogic zones is related to the geological interpretation of alluvial layers 
identified by Warren et al. (2002). However, it is important to distinguish the difference in 
approach used here and in Warren et al. (2002). In our interpretations, we rely solely on the 
statistical evaluation of mineralogic abundance data based on the XRD analyses. The 
interpretation of alluvial layering of Warren et al. (2002) was based on a combination of XRD, 
x-ray fluorescence (XRF), scanning electron microscopy (SEM), electron microprobe, and 
petrographic analyses. Because our statistical analysis was focused on sorbing minerals included 
in our mechanistic sorption model (iron oxide, smectite, illite/mica, zeolite, and calcite), our 
interpretation of layering is biased towards these minerals. Our approach should, therefore, be 
distinguished from that of Warren et al. (2002) in that it is not focused on alluvial layering but is, 
instead. focused on zones within the alluvial section that are of direct relevance to reactive 
transport, which we refer to as “mineralization zones.” Nevertheless, the interpretations of alluvial 
layering and mineralization zones share much in common, as will be discussed later in Section 3.5. 
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3.1 Mineral Abundance vs. Depth 

Figures 3.1 to 3.4 show plots of mineral abundance (mass percent based on XRD) on a log scale 
versus depth. The log scale is useful for spanning the nearly three orders of magnitude range in 
measured abundance of different minerals. The log scale is particularly useful for comparing 
low abundance minerals, such as hematite, to high abundance minerals, such as smectite, on the 
same plot. Because there are 2 1 different minerals observed in 4 different drillholes, the plots of 
mass percent versus depth are divided into groups of minerals as well as by drillhole. Each 
figure represents a different drillhole. In each figure, the minerals included in the mechanistic 
sorption model (calcite, hematite, mica, smectite, and clinoptilolite (a zeolite)) are plotted in the 
upper left;3 dolomite, kaolinite, glass, analcime (a zeolite), and mordenite (a zeolite) are plotted 
in the upper right; feldspars, including orthoclase (low -T feldspar) and sanidine (high-T feldspar) 
K-feldspars and albite, bytownite, and anorthite4 plagioclase feldspars are plotted in the lower 
left; opal, quartz, tridymite, hornblende, and clinopyroxene are plotted in the lower right. 

Figure 3.1 shows the mineral abundance data for ER-5-4. This data set includes 94 samples 
obtained over a range of depth from about 192 to 1134 m. This is the most extensive and 
detailed mineralogic data set for any drillhole in Frenchman Flat. Data spacing is variable, 
typically from about 0.3 m (1 ft) to about 15 m (50 ft). The variable data spacing promotes 
examination of the vertical variability at a range of scales given a limited number of samples. 
Mineral abundances range from 0.1 to over 80 mass percent. The lower detection limit is, at 
best, 0.1 mass percent, depending on the mineral. Detailed information regarding the XRD 
analysis can be found in Warren et al. (2002). Mineral abundances below the detection limit are 
not shown on the depth plots. For example, clinopyroxene was not detected in any samples from 
ER-5-4 and was, therefore, not plotted. Dolomite is detected sporadically - where not plotted, 
the dolomite abundance was below the detection limit of 0.1 %. 

Upon close examination of the mineral abundance data for ER-5-4, it appears that the mineral 
percentages typically exhibit smaller scale variability superposed on a larger-scale variability. 
The smaller scale variability is evident by a “cloud” or “scatter” of mineral percentages where 
data are closely spaced. The smaller scale variability generally occurs over scales less than the 
smallest data spacing of 0.3 m (or 1 ft). As a result, a structured pattern of small-scale spatial 
variability is generally not evident in the data. From a transport modeling perspective at CAU or 
HST scales, the small-scale variability in the mineralogy will be more practically addressed by 
use of effective properties rather than explicit of point values (see Chapter 6). 

The larger (subregional) scale variability appears to occur in zones. In a zone, the means and 
variances of one or more minerals are different than in surrounding zones. For example, in the 
depth range of about 3 15 to 340 m, clinoptilolite and cristobalite show large differences in both 
mean and variance compared to their mineral abundances above and below. The clinoptilolite 
percentage is relatively high, while the cristobalite percentage is relatively low. Also with 
respect to depths above and below that zone, kaolinite is largely absent, opal is sporadically 
present, and some minerals, such as smectite and bytownite, appear to have larger variances but 

The mechanistic sorption model is discussed in Chapter 4. 
‘ Only one sample contained anorthite (Ca-plagioclase). Generally, plagioclase was divided into albite (Na- 
plagioclase) and bytownite (Nao.3~.~CaX-plagioclase). 

3-3 



similar means. Another distinctive zone occurs between depths of about 700 and 780 m, where 
mean values of calcite and dolomite are relatively high, clinoptilolite is moderately high, 
orthoclase and bytownite feldspars are relatively low, and hornblende is not detected. A 
complete interpretation of mineralization zones for all drillholes is discussed in Section 3.3. 

Figure 3.2 shows the mineral abundance data for drillhole UE-Sn, which is located 477 m SSE of 
drillhole ER-5-4. Comparison of mineralogic data from drillholes ER-5-4 and UE-5n offers an 
opportunity to examine lateral continuity of the mineral abundances. The XRD data for UE-5n 
span a range of depth from about 210 to 475 m. The zonal mean values of the mineralogic 
abundances in drillholes ER-5-4 and UE-5n appear to correlate very closely in this depth range. 
Mineral abundances between depths of about 344 and 379 m in drillhole UE-5n appear to 
correlate with the distinctive zone in drillhole ER-5-4 between the 3 15 and 340 m depth range 
noted above. Most obviously in this zone, the clinoptilolite abundance is elevated, and the 
cristobalite abundance is diminished. Kaolinite is not present. This example clearly shows that 
certain zones of mineral abundance may be recognized and correlated laterally to different 
drillholes in southern Frenchman Flat over scales of hundreds of meters, as indicated by Warren 
et al. (2002) for alluvial layers. 

Figure 3.3 shows the mineral abundance data for ER-5-3, which is located in northern 
Frenchman Flat 5855 m NNE of ER-5-4. The mineral abundance data in ER-5-3 span depths 
between about 90 and 610 m. It is expected that the provenance of alluvium will exhibit 
differences between central and northern Frenchman Flat. Warren et al. (2002) point out that 
alluvium from ER-5-4 and UE-5n is vitric and chemically resembles the Wahmonie Formation, 
but also shows some influence from other prominent lithologies proximal to Frenchman Flat. 
Alluvium from ER-5-3 and U- 1 lg- 1 chemically resembles regional ash flow tuffs and is 
predominantly zeolitic rather than vitric. The differences are evident by comparison of mineral 
abundances in ER-5-4 and ER-5-3 (Figures 3.1 and 3.3). Among the sorbing minerals, ER-5-3 
exhibits several differences with respect to ER-5-4 over a similar depth range: 

larger abundances of clinoptilolite, 

slightly lower abundances of mica at greater depth, 

0 <O. 1 mass percent hematite below about 460 m depth, 

more extensive zones of high calcite abundance, and 

0 slightly lower smectite abundance at greater depths. 

Overall, the depth profiles of sorbing mineral abundances are clearly different between drillholes 
ER-5-3 and ER-5-4. In addition, no obvious correlation of zonal mean mineral abundances is 
evident, as will be discussed later in this chapter. 

The depth profiles of non-sorbing mineral abundances are also very different between ER-5-3 
and ER-5-3. For example: 
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No dolomite appears in ER-5-3 (below detection limit), although it occasionally 
appears in ER-5-4. 

Kaolinite is generally present to a depth of 1000 m (except for the 315 to 340 m depth 
range) in ER-5-4, but only to a depth of about 390 m in ER-5-3 (except for the 180 to 
270 m depth range). 

Glass is abundant in ER-5-4 and sporadic in ER-5-3. 

Cristobalite abundance is consistently lower in ER-5-3 below a depth of about 220 m. 

The zeolites analcime and mordenite appear occasionally in ER-5-3, but not in 
ER-5 -4. 

Orthoclase (low-T K-feldspar) abundance is consistently lower in ER-5-3 below a 
depth of about 230 m. 

0 Bytownite (plagioclase) abundance is typically lower in ER-5-3. 

Opal is rare in ER-5-4, but generally ubiquitous in ER-5-3 below a depth of about 200 
m. 

The quartz fraction is usually higher in ER-5-3. 

Tridymite is absent below a depth of about 200 m in ER-5-3 and below a depth of 
about 700 m in ER-5-4 (except for the 3 15 to 340 m interval). 

Interestingly, sanidine (high-T K-feldspar) and albite (Na-plagioclase) abundances exhibit 
similar decreases below similar depths of about 230-3 10 m. 

Figure 3.4 shows mineral abundance data for U-1 lg-1, located 720 m NNE of ER-5-3. Mean 
zonal abundances appear to correlate between U-1 lg-1 and ER-5-3 at similar depths, suggesting 
that zones with similar abundances of minerals or alluvial layers defined by Warren et al. (2002) 
may be laterally extensive over scales of hundreds of meters in the northern Frenchman Flat area. 
However, due to the limited XRD data for U-1 lg-1, this correlation is not verified at all depths. 
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Figure 3.1 Mineral abundance data from ER-5-4 obtained by XRD analysis. Depth relative to 
ground surface. Data from Warren et al. (2002). 
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Figure 3.4 Mineral abundance data from drillhole U-1 lg-1 obtained by XRD analysis. Depth 
relative to ground surface. Data from Warren et al. (2002). 

3.2 Univariate Statistics 

Univariate statistics are functions of one variable, such as mineral percentage. A bivariate 
statistic is a function of two variables, such as mineral percentage at one location and mineral 
percentage at another location (e.g. spatial correlation or variogram) or mineral percentage of 
two different minerals at the same location (e.g., correlation). 

Typical univariate statistics of interest are mean, variance, and median as well as the entire 
frequency distribution (histogram). This section examines the frequency distributions of the 
mineral abundances to help identify and distinguish “zones” having consistent mean and random 
variability of mineral abundances. Based on our preliminary interpretation of the mineral 
fraction data versus depth (section 3. l), the major non-random cause of spatial variability of 
mineral abundances appears to be zonal. The zonal variation is primarily attributed to 
differences in provenance of alluvial layers (Warren et al., 2002). 

1 i o  

Both histograms and normal probability plots will be used to examine the frequency 
distributions. Normal probability plots provide means for examining the frequency distribution 
relative to a normal (Gaussian) distribution. If the frequency distribution of the data is normal, 
the data will plot as a straight line on the normal probability plot. An important reason for 
examining the histograms and probability plots is to identify sub-populations within the data that 
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appear to correspond to distinct zones. Data having different sub-populations with different 
means and variances may show distinct peaks on the histograms and segmented lines of different 
slope on the normal probability plot. The histograms and normal probability plots are scaled 
both linearly and logarithmically to examine the shape of the frequency distributions. In some 
cases either the linear or logarithmic (log) scale is more useful, so both are shown for all 
minerals. The log scale is particularly useful for minerals that exhibit a large range in 
abundance, such as calcite and clinoptilolite. 

3.2.1 Histograms 

Histograms are useful for examining the variation of mineral abundance in several ways: 

to illustrate the range of mineral abundances, 

0 to illustrate the most frequent mineral abundances, 

to examine the shape of the distribution compared to a normal or log-normal 
distribution, and 

to examine the possibility of bi-modal or multi-modal distributions indicating two or 
at least three distinct sub-populations, respectively, within the frequency distribution. 

Histograms are presented both on a linear and logarithmic scale. For some minerals, linearly 
scaled histograms have large right-skewness, indicating that the frequency distributions are better 
viewed with a log scale. Right skewness in the linearly scaled histogram tends to occur for 
minerals that have a large range in mineral abundance, such as calcite and clinoptilolite. 

The histograms are presented along with several univariate statistics - mean, standard 
deviation, coefficient of variation, minimum and maximum, median (50th percentile), and lower 
and upper quartiles (25'h and 75'h percentiles) - at upper right. The coefficient of variation is 
the mean divided by the standard deviation, which measures the degree of spread in the 
distribution. A coefficient of variation of 1 .O or greater indicates either a relatively large range 
of values, a large skewness, or a bi- or multi-modal distribution. Comparison of the mean to the 
median also indicates skewness; if the median is significantly less than the mean, the distribution 
is skewed right. 

3.2.1.1 Linearly Scaled Histograms 

Figures 3.5 to 3.8 show histograms of mineral abundance (mass percentage based on XRD data) 
on a linear scale for all 21 minerals from ER-5-3, ER-5-4, UE-Sn, and U-1 lg-1. Some distinct 
sub-populations within the frequency distributions are readily recognized. Some of the 
distributions are bi- or multi-modal. Often, the mineral abundance for many samples is below 
the detection limit (mineral abundances reported as below the detection limit were included as 
0% in the summary statistics and histograms). For example, the left-most peak on hematite 
histogram indicates that a large number of samples contained iron oxide abundances below the 
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detection limit. The frequency scale (y-axis) on the histogram for hematite indicates that the 
hematite is below the detection limit in about 19% of the data. The histograms, in conjunction 
with the depth versus mineral abundance plots (Figures 3.1 to 3.4), indicate several other 
minerals with abundance frequently below the detection limit - dolomite, kaolinite, analcime, 
mordenite, clinopyroxene, glass, cristobalite, opal, tridymite, sanidine, albite, and anorthite. 
Other minerals - mica, smectite, quartz, hornblende, orthoclase, and bytownite - are 
ubiquitous or rarely observed to be below the detection limit. 

Because of the strong right-skewness of the frequency distributions for calcite and clinoptilolite, 
it is difficult to determine from the linearly scaled histograms whether a significant proportion of 
the XRD percentages for calcite and clinoptilolite are below the detection limit. For calcite and 
clinoptilolite, a log-scale histogram (see Figure 3.9) better displays the frequency distribution, 
particularly for much of the data having low XRD percentages. 

Only two of the linearly scaled histograms obviously reveal multi-modal frequency distributions 
- orthoclase and bytownite - having three and four apparently distinct peaks, respectively. 
Distinct peaks for orthoclase are centered at about 2, 6, and 9 mass percent, and for bytownite at 
about 1.5, 15, 21, and 33 mass percent. Most of the histograms show right skewness, indicating 
that the frequency distributions may be closer to log-normal than normal. If the frequency 
distribution is multi-modal, the question of skewness within the entire frequency distribution is 
not directly applicable. Several of the minerals - dolomite, kaolinite, analcime, mordenite, 
clinopyroxene, opal, tridymite, and anorthite - have zero median values, indicating that for the 
majority of the samples these mineral abundances are below XRD detection limits (-0.1 mass 
percent). Table 3.1 summarizes the univariate statistical analysis of the linearly scaled mineral 
abundance histograms. In identifying the number of modes or “peaks” in the frequency 
distributions, the “ +” symbol is used to indicate “greater than or equal to.” 
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Calcite 
Hematite 
Mica 
Smectite 
Clinoptilolite 
Dolomite 
Kaolinite 
Analcime 
Mordenite 
C linop yr oxene 
Glass 
Cristobali te 
Opal 
Quartz 
Tridymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
By tow nite 

5.1 1 
0.44 
3.44 

13.81 
9.90 
0.52 
0.21 
0.01 
0.02 
0.23 

13.11 
2.88 
0.89 
8.42 
0.56 
0.57 
7.34 
3.26 
2.95 

24.88 

6.64 
0.27 
1.71 
7.54 

11.01 
2.0 1 
0.38 
0.18 
0.14 
1.83 

12.18 
1.95 
2.38 
4.94 
1.27 
0.40 
2.7 1 
2.25 
2.37 
9.56 

Table 3.1 Summarized interpretation of univariate statistics of the linearly scaled 
mineral abundance histograms. 

Mean (3 Median ## of 

1.30 2.70 Right 1+ 
Mineral (mass %) (5%) dmean (mass %) Skewness modes 

0.6 1 
0.50 
0.54 
1.11 
3.88 
1.80 

12.73 
6.50 
8.07 
0.93 
0.68 
2.67 
0.59 
2.28 
0.7 1 
0.37 
0.69 
0.80 
0.38 

0.50 
3.20 

12.20 
4.10 
0.00 
0.00 
0.00 
0.00 
0.00 

15.00 
2.50 
0.00 
7.50 
0.00 
0.50 
7.40 
2.80 
2.90 

26.10 

? 
None 
Right 
Right 
? 
? 
? 
? 
? 
? 
Right 
? 
Right 
? 
Right 
? 
? 
? 
? 

2 
1 
1 
1+ 
2+ 
2+ 
2 
2 
2 
2 
2+ 
2+ 
1+ 
2+ 
1+ 
3+ 
2+ 
2 
4 

Anorthite 0.0 1 0.12 12.73 0.00 ? 2 
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Figure 3.5 Linearly scaled histograms of calcite, hematite, mica, smectite, and clinoptilolite 
abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-1 lg-1. Mineral abundances 
reported as below the detection limit were included as 0% in these histograms. Data from 
Warren et al. (2002). 
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Data from Warren et al. (2002). 
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Figure 3.7 Linearly scaled histograms of glass, cristobalite, opal, quartz, and tridymite, and 
hornblende abundances for XRD data from ER-5-4, ER-5-3, UE-Sn, and U-11 g-1. Mineral 
abundances reported as below the detection limit were included as 0% in these histograms. 
Data from Warren et al. (2002). 
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Figure 3.8 Linearly scaled histograms of orthoclase, sanidine, albite, bytownite, and anorthite, 
and hornblende abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-1 lg-1. Mineral 
abundances reported as below the detection limit were included as 0% in these histograms. 
Data from Warren et al. (2002). 
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3.2.1.2 Log-Scaled Histograms 

Figures 3.9-3.12 show log-scaled histograms for the 21 minerals reported in the XRD analysis. 
The log scaling is useful because: 

0 It helps span the wide variation in mineral abundances (up to 3 orders of magnitude). 

0 The mineral abundances within zones or alluvial layers tend to be log-normally 
distributed. 

0 Portions of the frequency distribution that fall below the detection limit are more 
clearly identified. 

For most minerals, distinct sub-populations within the frequency distributions are more readily 
recognized on the log scale. Peaks in the frequency distribution corresponding to values with 
mineral abundances at or below the detection limit of the XRD analysis are more easily 
identified. Distinct sample populations at or below the detection limit are clearly evident in 
calcite and clinoptilolite histograms in Figure 3.9, which were not obvious with linear scaling in 
Figure 3.5. Bi- or multi-modal distributions are more apparent on the log scale. For example, 
the calcite and clinoptilolite frequency distributions appear to be composed of three or more sub- 
populations in addition to the one at or below the detection limit. The frequency distributions for 
glass, cristobalite, and albite appear to contain two sub-populations in addition to the sub- 
population at or below the detection limit. Orthoclase and bytownite appear to contain two or 
more sub-populations with the log scale. In the case of orthoclase and bytownite, which have 
very low coefficients of variation of 0.37 and 0.38, respectively, the linear scaling is actually 
more revealing. 

The log-scaled frequency distributions generally show less skewness. In sub-populations for 
data above detection limits, nearly symmetric, bell-shaped distributions are evident for hematite, 
mica, smectite, quartz. In addition, the frequency distributions within bi- or multi-modal 
distributions appear more symmetric, particularly for calcite, hematite, clinoptilolite, glass, 
cris tobalite, orthoclase, sanidine, and albite. Overall, the mineral abundance frequency 
distributions are better characterized as uni-, bi-, or multi-modal log normal distributions rather 
than uni-, bi- or multi-modal normal distributions. Therefore, if variability of mineralization is 
to be considered in a modeling effort, assumptions of log-normal distributions within different 
zones will be more plausible and justifiable for most minerals. Nonetheless, it is useful to 
examine the frequency distributions with both linear and logarithmic scaling, mainly because 
some minerals have narrow ranges of variability and some minerals have wide ranges of 
variability. 

Table 3.2 summarizes interpretation of the univariate statistics for the log-scaled histograms. In 
Table 3.2, the units are scaled to logarithm of abundance as a fraction instead of percentage to 
better accommodate log units. The mean, standard deviation, coefficient and median are based 
only on data values above the detection limit of 0.1 %. The coefficient of variation is not shown 
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because it is not a viable statistic for logarithmic values. The percentage of values above the 
XRD detection limit for each mineral are also given. 

Compared to the univariate statistics for the linearly scaled histograms, the log-scaled histograms 
exhibit consistently smaller variances and skewness. The reduction in variance is attributed not 
only to the loglo units, but also the exclusion of the data below detection limits and reduction in 
skewness. 

Table 3.2 Summarized interpretation of univariate statistics for log-scaled mineral 
abundance histograms? 

Mean Log % above 
Mass detection # of 

Mineral Fraction CT Median Skewness limit modes 
Calcite - 1.48 0.46 -1.51 Small 89 1+ 
Hematite -2.29 0.13 -2.30 Small 79 2 
Mica -1.50 0.21 -1.49 Small 98 1 
Smecti te -0.92 0.23 -0.91 Small 100 1 
Clinoptilolite - 1.32 0.61 -1.32 Small 98 3+ 
Dolomite - 1.77 0.56 -2.05 ? 14 2+ 
Kaolinite -2.48 0.30 -2.52 Small 47 2+ 
Analcime -1.64 0.0 -1.64 ? 0.6 2 
Mordenite -2.33 0.28 -2.52 ? 3.7 2 
Clinopyroxene -0.97 0.25 -0.90 ? 1.9 2 
Glass -0.72 0.19 -0.69 Small 63 2 
Cris tobali te -1.58 0.29 -1.55 Small 90 2+ 
Opal -1.55 0.46 -2.00 Small 21 2 
Quartz -1.13 0.22 -1.12 Small 99 1-t 
Tridymite - 1.87 0.44 -1.82 Small 20 3 
Hornblende -2.34 0.31 -2.30 Small 0.7 1 2+ 
Orthoclase -1.18 0.23 -1.13 Small 100 3+ 
Sanidine -1.50 0.21 -1.53 Small 91 2+ 
Albite - 1.48 0.25 -1.46 Small 77 2 
Bytownite -0.65 0.25 -0.58 Small 99 4 
Anorthite -1.80 0.0 -1.80 ? 0.6 2 

Note that values reported as below detection limit were not included in log-scaled summary statistics. 
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Figure 3.9 Log-scaled histograms of calcite, hematite, mica, smectite, and clinoptilolite 
abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-1 1 g-1. Mineral abundances 
reported as below the detection limit were plotted to the left of the 0.1% value. Data from 
Warren et al. (2002). 
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Figure 3.1 0 Log-scaled histograms of dolomite, kaolinite, analcime, mordenite, and 
clinopyroxene abundances for XRD data from drillholes ER-5-4, ER-5-3, uE-5t-1, and U-1 lg-1. 
Mineral abundances reported as below the detection limit were plotted to the left of the 0.1% 
value. Data from Warren et al. (2002). 
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Figure 3.1 1 Log-scaled histograms of glass, cristobalite, opal, quartz, tridymite, and hornblende 
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3.2.2 Normal Probability Plots 

Normal probability plots are used to compare a frequency distribution with a normal (Gaussian) 
distribution. In a normal probability plot, the cumulative probability of the data is plotted on a 
customized cumulative probability scale on the Y axis versus the data value on the X axis, which 
may be linearly or logarithmically scaled. If the frequency distribution is normal, the cumulative 
probability curve will plot along a straight line. Multiple sub-populations of normally- 
distributed data may be evident from multiple linear segments. 

Both linear and log scaling are useful for analyzing the mineral abundance data on a probability 
plot. The linear scale may be more appropriate for minerals that exhibit small coefficients of 
variation for the range of samples analyzed, such as mica. The linear scale is also useful in 
accounting for mineral abundances reported as below the detection limit (plotted as 0 mass 
percent here); on a log scale, these values cannot be plotted. Also, the linear scale can be more 
revealing for analyzing the portion of the frequency distribution having larger values, which is 
compressed by the log scale. The log scale is usually more appropriate for data that are log- 
normally distributed or have a wide range of values. Also, the log scale can be more revealing 
for portions of the frequency distribution having smaller values. 

Interpretation of the probability plot is not always straightforward. The cumulative probability 
plot may appear more curved than linear. This may be attributed to a non-normal distribution. 
Depending on the shape of the frequency distribution of sub-populations within the data, either 
the logarithmic or linear scale may yield a more linear cumulative distribution. The appearance 
of distinct linear segments indicates multiple sub-populations. The points where change in slope 
occur indicate possible cutoff values for dividing the data in sub-populations. Data near the tails 
(the extreme low and high values of the distribution) are usually undersampled, and thus may 
appear scattered. In general, undue attention should not be paid to the data tails. 

3.2.2.1 Linearly Scaled Normal Probability Plots 

Figures 3.13 to 3.16 show linearly scaled probability plots for the 21 minerals. The horizontal 
scales are linearly scaled in units of percent. The range of each horizontal scale is customized to 
the mineral because of the large differences in magnitude and range of mineral abundance for 
different minerals. 

The interpretation of the probability plots is mainly concerned with identifying portions of the 
cumulative probability curve that indicate sub-populations within the data. For example, in the 
probability plot for smectite shown in Figure 3.13, two linear segments are evident, with a break 
in slope at about 16% smectite. Using the probability plot, the interpretation could be made that 
smectite generally falls into two sub-populations where a 16% cutoff value provides a good 
indication of whether a datum is more likely in a sub-population or zone of higher or lower 
smectite abundance. 

Another important feature of the probability plot is the portion of the data that is below the 
detection limit. This appears as a vertical segment of cumulative probabilities on the far left of 
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the probability plot. For example, in Figure 3.13 the cumulative distribution function for 
hematite begins at the lower left by rising vertically to about 19%, which represents the portion 
of data where hematite abundances are below the detection limit. An important question is 
whether data which plot below the detection limit may actually represent the extreme low values 
of the frequency distribution of a sub-population of data entirely above the detection limit. This 
issue may be addressed by examining how the portions of the probability plot for data above and 
below the detection limit merge together. If a significant change in slope can be observed which 
is not a result of scatter in the tail, it is likely that much of the data below the detection limit 
represents a separate sub-population of very small or zero values. Hematite, for example, 
appears to exhibit a separate sub-population for values below 0.1 % because an abrupt slope 
change is seen in the cumulative probability between values of hematite abundance above and 
below 0.1 %. On the other hand, no abrupt slope change is seen for mica abundance above and 
below 0.1%. The data for mica that fall below the detection limit probably represent extremely 
low values (tails) in a sub-population that falls mostly above the detection limit. Other minerals 
besides hematite that appear to exhibit sub-populations with very small or zero value abundances 
are calcite, clinoptilolite, dolomite, kaolinite, analcime, mordenite, clinopyroxene, glass, 
cristobalite, opal, tridymite, sanidine, albite, and anorthite. Other minerals besides mica that 
appear to be ubiquitous (where XRD zero values probably represent extremely low values in the 
frequency distribution) are smectite, quartz, hornblende, orthoclase, and bytownite. 
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Figure 3.1 3 Linearly scaled probability plots of cumulative abundance of sorbing minerals 
calcite, hematite, mica, smectite, and clinoptilolite clinopyroxene detected by XRD analysis in 
ER-5-3, ER-5-4, UE-5n, and U-1 lg-1. 
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Figure 3.14 Linearly scaled probability plots of cumulative abundance of non-sorbing minerals 
dolomite, kaolinite, analcime, mordenite, and clinopyroxene detected by XRD analysis in 
ER-5-3, ER-5-4, UE-5n, and U-1 1 g-1. 
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Figure 3.15 Linearly scaled probability plots of cumulative abundance of the non-sorbing 
minerals glass, cristobalite, opal, quartz, tridymite, and hornblende detected by XRD analysis in 
ER-5-3, ER-5-4, UE-5n, and U-1 1 g-1. 
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Figure 3.1 6 Linearly scaled probability plots of cumulative abundance of the non-sorbing 
minerals orthoclase, sanidine, albite, bytownite, anorthite detected by XRD analysis in ER-5-3, 
ER-5-4, UE-5n, and U-1 1 g-1. 
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3.2.2.2 Log-Scaled Normal Probability Plots 

Figures 3.17 to 3.20 show log-scaled normal probability plots of mineral abundance. 
Considering that the frequency distribution of most of the sub-populations appear approximately 
log-normal, a log-scaled probability plot should, in general, more clearly reveal separate sub- 
populations compared to the linearly scaled probability plot. This is particularly true for calcite 
and clinoptilolite, which have large ranges of mineral abundance. However, for other minerals 
similar interpretations can be made from both the linearly and log-scaled probability plots. The 
main exception is for identifying sub-populations with zero values (below the detection limit) - 
in this case the linear scale is more revealing. 
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Figure 3.17 Log-scaled probability plots of cumulative abundance of sorbing minerals calcite, 
hematite, mica, smectite, and clinoptilolite clinopyroxene detected by XRD analysis in drill 
drillholes ER-5-3, ER-5-4, UE-5n, and U-1 1 g-1. 
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Figure 3.18 Log-scaled probability plots of cumulative abundance of non-sorbing minerals 
dolomite, kaolinite, analcime, mordenite, and clinopyroxene detected by XRD analysis in drill 
drillholes ER-5-3, ER-5-4, UE-5n, and U-1 lg-1. 
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Figure 3.1 9 Log-scaled probability plots of cumulative abundance of the non-sorbing minerals 
glass, cristobalite, opal, quartz, tridymite, and hornblende detected by XRD analysis in drill 
drillholes ER-5-3, ER-5-4, UE-5n, and U-1 lg-1. 
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Figure 3.20 Log-scaled probability plots of cumulative abundance of the non-sorbing minerals 
orthoclase, sanidine, albite, bytownite, anorthite detected by XRD analysis in drill drillholes 
ER-5-3, ER-5-4, UE-5n, and U-1 lg-1. 
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3.2.2.3 Interpretation of Normal Probability Plots 

Table 3.3 summarizes the interpretation of both the linear and log-scaled probability plots. 
Based on the normal probability plots with linear and log scales, the number of sub-populations 
and their approximate cutoff values (bounds for different sub-populations) are identified. For 
some minerals - calcite, mica, smectite, clinoptilolite, cristobalite, tridymite, hornblende, 
orthoclase, albite, and bytownite - different nonzero cutoff values are identified in the linearly 
and log-scaled probability plots. The differences may occur because some sub-populations in the 
mineral abundances are not widely separated (for which linear scaling is more effective) or 
because the mineral abundance has a wide range of variation (for which the log scaling is more 
effective). For example, a bi-modal distribution is more evident for mica using linear scaling. 
For quartz, the frequency distribution appears uni-modal with log scaling, but is difficult to 
interpret with linear scaling. For other minerals - hematite, dolomite, analcime, mordenite, 
clinopyroxene, glass, opal, sanidine, and anorthite - the interpretation of the mineral fraction of 
sub-population cutoffs is generally the same for either linear or log scaling. 

The right column in Table 3.3 gives the total number of sub-populations and respective cutoff 
values inferred from both linearly and log-scaled probability plots. These interpretations of the 
univariate statistics are intended to provide some guidance for interpreting the raw mineral 
abundance data with respect to zones (or alluvial layers) having similar statistical properties. In 
interpreting zones, the cutoff values do not have to be honored within each zone because there 
may be overlap between the frequency distributions of different sub-populations of each mineral. 
In the next section, zones are identified in the plots of mineral abundance versus depth shown in 
Figures 3.1 to 3.4. The cutoff values identified in this section were used to help distinguish 
zones of similar mineral abundance. 
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Table 3.3 Summarized interpretation of linearly and logarithmically scaled normal 
probability plots, with number of sub-populations and estimated cutoffs (in 
mass %) given. 

Sub -Populations: Sub-Populations : Sub-Populations : 
cut  0 ffs Cutoffs cutoffs 

Mineral Linear Scaling Log Scaling Total 
Calcite 3: 0.0, 4.0 2: 16.0 4: 0.0, 4.0, 16.0 
Hematite 
Mica 
Smectite 
Clinoptilolite 
Dolomite 
Kaolinite 
Analcime 
Mordenite 
Clinopyroxene 
Glass 
Cris tobali te 
Opal 
Quartz 
Tridymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
Bytownite 

2: 0.0 
2: 4.5 
2: 16.0 
3: 0.0, 3.0 
2: 0.0 
3: 0.0, 0.60? 
2: 0.0 
2: 0.0 
2: 0.0 
3:0.0, 17.0 
3: 0.0, 3.8 
2: 0.0 
3 

2: 0.0 
2: 0.5 
I ?  
2: 3.5 
3: 0.0,4.0 
2: 29.0 

1 
1 
3: 8.0, 16.0 
4: 1.5, 3.0,22.0 
1 
1 
1 
1 
1 
2: 17.0 
2: 5.0 
1 
1 
2: 4.5 
2: 1.1 
2: 4.8 
2: 3.5 
2: 3.0 
3: 11.0, 29.0 

2: 0.0 
2: 4.5 
3: 8.0, 16.0 
5:0.0, 1.5,3.0,22.0 
2: 0.0 
3: 0.0 0.60? 
2: 0.0 
2: 0.0 
2: 0.0 
3: 0.0, 17.0 
4: 0.0, 3.8,5.0 
2: 0.0 
1 
3: 0.0, 4.5 
3: 0.5, 1.1 
2: 4.8 
2: 3.5 
4: 0.0, 3.0,4.0 
3: 11.0, 29.0 

Anorthite 2: 0.0 1 2: 0.0 
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3.3 Mineralization Zones 

In our geostatistical interpretation of the mineral abundance data for ER-5-3, ER-5-4, UE-Sn, and 
U-1 lg-1, a “mineralization zone” is defined as a vertical interval where the mineral abundance 
data appear to fall within a sub-population characterized by a mean and variance. The purpose 
of identifying the zones is to separate out the spatial variation of the mineral abundances 
attributed to random processes from those related to geologic processes, such .as differences in 
provenance. 

For this study, the identification of the zones is in part quantitative - based on identifying sub- 
populations and cutoff values as described the previous section - and part subjective. The 
subjective aspect involves study of the mineral abundance versus depth profiles (Figures 3.1 to 
3.4) with consideration of the geologic processes involved. As indicated by Warren et al. (2002), 
distinct alluvial layers can be identified from a combined interpretation of the mineralogic, 
chemical, and lithologic data in ER-5-4 and UE-Sn. These different alluvial layers have different 
provenance. With that in mind, the alluvial layers should be evident where shifts in mean 
mineral abundances occur (assuming the distribution of mean mineral abundances is indicative 
of pr~venance) .~ Therefore, if the sub-populations of a mineral have overlapping frequency 
distributions (e.g., smectite), the interpretations of zonal mean abundances for that mineral need 
to be interpreted in the context of zonal means for other minerals. In other words, the mineral 
abundance data for each mineral cannot be interpreted independently of all other minerals. 
Unfortunately, it is not straightforward to perform a fully quantitative and simultaneous 
interpretation of the spatial interrelationships, interdependencies, and geological tendencies of all 
the mineralization zones. As mentioned earlier, the methodology used here is distinctly different 
from the methods used in Warren et al. (2002). Here, we rely solely on quantitative XRD data. 
The alluvial layering interpretation used in Warren et al. (2002) relies on XRD along with SEM, 
XRF, microprobe and petrographic analyses. It should also be recognized that identification and 
interpretation of mineralogical zones based on an alluvial layering model may be complicated by 
diagenesis that may not conform to stratigraphic boundaries. While the data used to assign 
layering is different, our data analysis is, in general consistent with that of Warren et al. (2002). 
Section 3.5 provides comparison of these two interpretations. 

Table 3.4 presents our interpretation of the number of distinct mineralization zones and zonal 
mean abundances for drillholes ER-5-4, UE-Sn, ER-5-3, and U-1 lg-1 based on our statistical 
analysis of the univariate data and interpretation of the mineral vs. depth profiles. The number of 
zones may include a zone composed exclusively of mineral abundance below the detection limit, 
which is indicated by a zonal mean abundance of 0.0 (e.g., for calcite, hematite, dolomite, 
kaolinite. analcime, mordenite, clinopyroxene, glass, cristobalite, opal, tridymite, sanidine, 
albite, and anorthite.) 

’ This, of course, does not need to be the case. For example, it is possible that mean mineral abundances for two 
alluvial layers would be identical. However, a textural or petrographic analysis might show an obvious distinction 
between the two layers. 
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Table 3.4 Number of mineralization zones and zonal mean abundances 
interpreted from XRD data from ER-5-4, UE-5n, ER-5-3, and U-llg-1. 

Mineral # of Zones Zone mean abundance (% ) 
Calcite 
Hematite 
Mica 
Smectite 
Clinoptilolite 
Dolomite 
Kaolinite 
Analcime 
Mordenite 
Clinop yroxene 
Glass 
Cristobalite 
Opal 
Quartz 
Tridymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
By tow nite 
Anorthite 

4 
2 

2 

3 
3 
2 
2 

0.0, 2.8, 8.9, 20.6 
0.0,0.55 
1.45, 3.2, 6.7 
4.5, 12.4, 28 
0.36, 2.1,5.9, 21 
0.0,0.89, 8.8 
0.0,0.42 
0.0, 2.30 
0.0,0.58 
0.0, 12.3 
0.0, 8.3, 23 
0.0, 1.61,4.3 
0.0, 3.6 
5.2, 11.7 
0.0, 0.78, 3.6 
0.0,0.28,0.87 
3.9, 8.3 
0.0, 2.8, 5.9,9.6 
0.0,2.9, 6.1,8.8 
3.5, 14.4, 22, 32 
0.0, 1.60 

Depth profiles of the zonal mean abundances are useful for identifying zones or “layers” that 
could be expected to have similar radionuclide sorbing properties. The raw mineral abundance 
data are more difficult to interpret because of the scatter related to random processes. Figures 
3.21 to 3.24 show the same plots of mineral abundance versus depth for ER-5-4, UE-Sn, ER-5-3, 
and U-1 lg-1 as shown in Figures 3.1 to 3.4, but with profiles of zonal mean abundance 
superposed. Note that because of the log scale, the zonal mean values of 0.0 are plotted at a 
value of 0.1% (the detection limit). Depth intervals where the zonal mean abundance is constant 
indicate continuous intervals of similar mineral abundance. For example, in ER-5-4 the zone 
mean abundances of all minerals is relatively stable between the depths of about 500 to 700 m. 
Below a depth of 700 m, the zonal mean abundances of several minerals - calcite, dolomite, 
cristobalite. glass, orthoclase, albite, bytownite, sanidine, quartz, tridymite, and hornblende show 
an abrupt change. This represents a clear transition in the mineralogy of the alluvium, which are 
identified as distinct alluvial layers by Warren et al. (2002). 

In other depth intervals, the zonal mean abundances of several minerals appear to fluctuate 
rapidly with depth. For example, in the depth interval between 780 to 900 m in drillhole ER-5-4, 
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the zone mean abundances of nearly all minerals appear to fluctuate rapidly with depth. On 
closer inspection, the fluctuation appears to occur between values of zonal mean abundances 
from alluvium above 780 m depth and below 900 m depth. This would indicate that changes in 
alluvial composition occur in the 780 to 900 m depth interval. In this interval, it appears that at 
least two different types of alluvial sediment are interfingering. 

In ER-5-3, zonal mean abundances appear relatively uniform above a depth of 200 m and below 
a depth of 400 m. Between the depths of about 220 to 400 m there is much fluctuation in the 
zonal mean abundances. For some minerals -hematite, mica, albite, sanidine, and bytownite 
- the fluctuation occurs primarily between zonal mean abundances above 220 and below 400 
m. For other minerals - calcite and the rare minerals mordenite, anorthite, and clinopyroxene 
- relatively high zonal mean abundances are observed between the 220 to 400 m depth. 
Smectite shows fluctuations to relatively lower zonal mean abundances between 220 to 400 m 
depth. Clinoptilolite and opal show consistently higher zonal mean abundances below 220 m 
depth. Tridymite is conspicuously absent below 220 m depth. Overall, the mineralogy could be 
divided into three major layers in ER-5-3 based on the 220 and 400 m depths. The variation in 
mineral abundances within the depths between 220 and 400 m appears to be related, in part, to 
interfingering of alluvial sediments with the different provenances of the layers above 220 m and 
below the 400 m. It may also suggest possible in-situ alteration, though the interpretation of 
alteration is better suited to the comprehensive lithologic and petrographic characterization 
performed by Warren et al. (2002). 

The zonal mean abundances appear to correlate very closely between nearby drillholes - 
ER-5-4 and UE-5n in central Frenchman Flat and ER-5-3 and U-1 lg-l  in northern Frenchman 
Flat. The composition of mineralization zones or alluvial layers appears to persist laterally over 
the scale of hundreds of meters, but not across the scale of 5 to 10 km between the southern and 
northern testing areas of Frenchman Flat basin. 
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Figure 3.21 Mineral abundance data from ER-5-4, with zonal mean abundances superposed. 
Data from Warren et al. (2002). 
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Figure 3.22 Mineral abundance data from UE-5n, with zonal mean abundances superposed. 
Data from Warren et al. (2002). 
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Figure 3.23 Mineral abundance data from ER-5-3, with zonal mean abundances superposed. 
Data from Warren et al. (2002). 
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Figure 3.24 Mineral abundance data from drillhole U-1 1 g-1, with zonal mean abundances 
superposed. Data from Warren et al. (2002). 
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3.4 Correlations between Sorbing and Non-Sorbing Minerals 

Considering that the spatial distribution of calcite, hematite, mica, smectite, and clinoptilolite 
(defined as the sorbing minerals in this report) are of primary interest in application to reactive 
transport modeling, three important questions may arise: 

0 Does spatial cross-correlation between different sorbing minerals exist, such that the 
abundances of some sorbing minerals are dependent on the abundances of other 
sorbing minerals? 

Does spatial cross-correlation between sorbing and non-sorbing minerals exist, such 
that the abundances of some non-sorbing minerals are indicative of the abundances of 
sorbing minerals? 

Might the correlation of abundances of different minerals be interpreted to indicate 
the origin of the mineral abundances - whether by deposition or in-situ 
mineralization (alteration)? 

This section addresses these questions by statistical analysis of the bivariate correlation between 
abundances of sorbing and other sorbing or non-sorbing minerals at the same location. 

If the abundance of one mineral at a particular location does not depend on the abundance of an 
other mineral at that same location, the bivariate correlation of abundances of two minerals at the 
same location should not differ significantly from zero. A complete evaluation of spatial cross- 
correlation of mineral abundances for different minerals would require examining the bivariate 
correlation for data from different (instead of the same) locations, which is beyond the scope of 
this report. Spatial auto-correlation correlation of mineral abundances is examined in Chapter 5 
using variogram analyses. 

The question of the origin of mineral distribution is critical to development of conceptual models 
for addressing spatial variability of mineral abundance. For example, if mineral abundance can 
be entirely related to provenance and alluvial fan deposition, then a depositionally-based model, 
such as described by the alluvial layers identified by Warren et al. (2002), may provide an 
accurate and geologically plausible conceptual model for describing much of the spatial variation 
of minerals. If, however, diagenetic processes are involved, other considerations such as the role 
of the thermal, hydrologic, and climatic history of the basin may need to be integrated into 
development of the conceptual model. 

One way to address these questions is to examine the correlation of mineral abundances of 
different minerals. If the mineral abundances of two minerals are significantly correlated 
(negatively or positively) then the abundance of one mineral contains information on the 
abundance of the other. If the mineral abundances of two minerals are not significantly correlated, 
then the mineral abundance of one mineral is, in effect, statistically independent of the other. 
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Correlation of the mineral abundances of two minerals, 
measured by the correlation coefficient p defined by: 

f,,j and f 2 , i ,  for i=l, ..., Ndata is 

where f , , i  and f 2 . 1  are the mean values of the mineral fraction of minerals 1 and 2, respectively. 

The statistical analysis of correlation greatly depends on the assumption that the joint probability 
distribution is a binormal (two-dimensional Gaussian) distribution. In practice, a scatterplot is 
used to display the joint probability distribution, where the axes are scaled by the magnitude of 
the values of the two variables. If the joint probability distribution is binormal, the points on the 
scatterplot will look like an oval cloud with increasing density toward the center. If the data are 
positively correlated , the cloud will be elongated in a direction with positive slope. If the data 
are uncorrelated ( p = 0), the cloud in the scatterplot will either have no elongation or the 
elongation will be in the vertical or horizontal direction. If the data are negatively correlated, the 
cloud will be elongated in a direction with negative slope. For perfect correlation of -1.0 or 
+I  .O, the cloud will appear as a line. Non-binormal joint probability distributions may be caused 
by non-Gaussian probability distributions. Multiple sub-populations may appear as several fairly 
distinct clouds in the scatterplot. We examined the correlation of both the mineral abundances 
and log 10 transformed mineral abundances. The loglo transformation consistently exhibited a 
closer approximation to a binormal distribution. 

Alternatively, “rank correlation” can be used as a robust detector of correlation, particularly for 
non-Gaussian probability distributions. Rank correlation, r, is defined by 

2 

i= l  i=l 

where RIi  and R,, are the rank of datum i for variables 1 and 2, respectively. Rank correlation 
provides a measure of the relative rank or order of the two variables that is insensitive to the 
shape of the frequency distribution of either variable. Rank correlation measures the tendency 
for extreme values of two variables to occur in tandem. 

When evaluating the correlation of two variables, it is good practice to evaluate both p and r. It 
is possible that p may appear significant as a result of outliers or deviation from a binormal 
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distribution. The rank correlation provides a second test; if p is significant and unaffected by 
deviations from a binormal distribution, then r should also be significant. 

Significance of pcan be tested by evaluating the Student’s distribution, A(t,v), where 

N is number of data, and v=(N-2) degrees of freedom. For this study, A(t,v) was evaluated using 
the FORTRAN function “betai” from Numerical Recipes (Press et al., 1992). The value of 
1-A(t,v) is the significance level at which the hypothesis that correlation is actually zero is 
disproved. In this application, the significance level represents an estimate of the probability that 
the correlation could actually be zero, given the uncertainty of the data. If 1 -A(t,v) is greater or 
equal to the significance level, p is not significantly different than zero. Typically, a significance 
level of 0.05 is assumed. The significance of r can be tested in a similar manner, where r is 
substituted for p. 

The final goal of this section is to determine which sorbing and non-sorbing minerals exhibit 
significant correlation with the sorbing minerals. The test for “significance” in this study 
requires passing of four tests: 

The absolute value of the correlation, p, must be greater than or equal to 0.250. 

The significance level of the correlation, p, for Pr { p= 0) must be less than or equal to 
0.05 

The absolute value of rank correlation, r, must be greater than or equal to 0.250. 

0 The significance level of the rank correlation, r, for Pr{ 1=0} must be less than or 
equal to 0.05 

Figures 3.25 to 3.39 show the scatterplots of the mineral abundance data. The loglo fractions of 
the dependent variables, the sorbing minerals - calcite, hematite, mica, smectite, and 
clinoptilolite - are scaled on the Y axis, and the loglo fractions of the independent variable, 
whether a sorbing or non-sorbing mineral, are scaled on the X axis. A list of important statistics 
are given on the right of each scatterplot, including: 

number of data evaluated and plotted (above the detection limit), 

number trimmed (below the detection limit), 

the mean and standard deviation of the X and Y variables in loglo units, 

the correlation and its significance level (probability that the correlation equals O.O), 
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e the rank correlation and its significance level (probability that the rank correlation 
equals 0.0). 

Tables 3.5 to 3.9 summarize the statistics (based on loglo mineral abundance) used to evaluate 
the significance of correlation between sorbing minerals and other sorbing or non-sorbing 
minerals. 

Table 3.5 Correlation statistics used to determine magnitude and significance of 
correlation between calcite and other sorbing or non-sorbing minerals. 

Mineral Pair Significant 
Y variable X variable P PrtP=o) r Pr(r=O) Correlation? 

Calcite 
Calcite 
Ca lc i te 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 
Calcite 

Hematite 
Mica 
Smecti te 
Clinoptilolite 
Dolomite 
Kaolinite 
Glass 
Cristobalite 
Opal 
Quartz 
Tridymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
B ytownite 

-0.240 
-0.068 
0.129 
0.264 
0.563 
0.153 

-0.139 
-0.308 
-0.27 1 
0.47 1 
0.035 

-0.333 
-0.506 
0.021 

-0.194 
-0.642 

0.008 
0.408 
0.118 
0.001 
0.003 
0.195 
0.176 
0.000 
0.135 
0.000 
0.810 
0.000 
0.000 
0.8 12 
0.039 
0.000 

-0.190 
-0.155 
0.079 
0.3 17 
0.537 
0.255 
-0.063 
-0.333 
-0.463 
0.464 
-0.0 13 
-0.373 
-0.434 
0.041 
-0.129 
-0.706 

0.038 
0.060 
0.340 
0.000 
0.007 
0.028 
0.541 
0.000 
0.006 
0.000 
0.928 
0.000 
0.000 
0.638 
0.175 
0.000 

No 
No 
No 
Yes 
Yes 
No 
No 
Yes 
No 
Yes 
N O  
Yes 
Yes 
No 
No 
Yes 
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Table 3.6 Correlation statistics used to determine magnitude and significance of 
correlation between hematite and other sorbing or non-sorbing minerals. 

Mineral Pair Significant 
Y variable X Variable P Pr(P=O) r Pr(r=O) Correlation? 

Hematite Calcite -0.240 0.008 -0.190 0.110 No 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 
Hematite 

Mica 
Smectite 
Clinoptilolite 
Dolomite 
Kaolinite 
Glass 
Cristobalite 
Opal 
Quartz 
Tridymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
Bvtownite 

-0.040 
0.042 

0.381 
0.1 17 

0.175 
0.045 

0.208 
0.024 
0.117 
0.013 
0.018 
0.142 

-0.158 

-0.060 

-0.226 

0.65 1 
0.631 
0.073 
0.184 
0.182 
0.554 
0.049 
0.882 
0.010 
0.139 
0.790 
0.182 
0.886 
0.865 
0.106 

0.0 12 
0.121 
-0.137 
0.495 
0.270 
0.222 
0.189 
0.002 
-0.096 
-0.00 1 
0.016 
0.270 
0.066 
0.077 
0.230 

0.888 
0.170 
0.123 
0.072 
0.002 
0.027 
0.033 
0.994 
0.279 
0.993 
0.856 
0.002 
0.479 
0.458 
0.008 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 

Table 3.7 Correlation statistics used to determine magnitude and significance of 
correlation between mica and other sorbing or non-sorbing minerals. 

Mineral Pair 
Y variable X variable 

Significant 
Correlation? 

Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 
Mica 

Calcite 
Hematite 
Smectite 
Clinoptilolite 
Dolomite 
Kaolinite 
Glass 
Cris tobali te 
Opal 
Quartz 
Trid ymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
Bvtownite 

-0.068 
-0.040 
0.193 

-0.1 16 
0.000 
0.025 

-0.143 
0.020 

-0.052 
-0.258 
-0.08 
0.469 
0.062 

-0.115 
-0.170 
0.253 

0.408 -0.151 
0.651 -0.081 
0.014 0.164 

0.998 0.051 
0.144 -0.205 

0.829 -0.056 
0,150 -0.131 
0.809 0.072 
0,763 0.011 

0.900 0.052 
0.000 0.511 
0.431 0.103 

0.001 -0.347 

0.164 -0.135 
0.056 -0.191 
0.001 0.428 

0.065 
0.35 1 
0.038 
0.010 
0.812 
0.626 
0.188 
0.375 
0.948 
0.000 
0.7 15 
0.000 
0.191 
0.103 
0.032 
0.000 

No 
No 
No 
No 
No 
No 
No 
No 
No 
Yes 
No 
Yes 
No 
No 
No 
Yes 
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Table 3.8 Correlation statistics used to determine magnitude and significance of 
correlation between smectite and other sorbing or non-sorbing minerals. 

Significant 
Y variable X Variable P PI-(@) r Pr( PO) Correlation? 

Smectite Calcite 0.129 0.118 0.076 0.355 No 

Mineral Pair 

Smectite 
Smecti te 
Smectite 
Smec tite 
Smectite 
Smectite 
Smectite 
Smectite 
Smectite 
Smectite 
Smectite 
S mec tite 
Smectite 
Smectite 
Smectite 

Hematite 
Mica 
Clinoptilolite 
Dolomite 
Kaolinite 
Glass 
Cris tobali te 
Opal 
Quartz 
Tridymite 
Hornblende 
Orthoclase 
Sanidine 
Albite 
Bytownite 

0.042 
0.193 

0.794 
0.150 
0.014 
0.072 

-0.395 

-0.494 
-0.094 
-0.590 
0.152 

-0.404 
-0.282 
-0.344 
-0.3 18 

0.63 1 
0.0 14 
0.000 
0.000 
0.191 
0.886 
0.382 
0.002 
0.235 
0.000 
0.060 
0.000 
0.000 
0.000 
0.000 

0.094 0.283 
0.166 0.035 
-0.443 0.000 
0.807 0.000 
0.23 1 0.042 
-0.052 0.604 
0.141 0.083 
-0.503 0.002 
-0.190 0.016 
-0.531 0.000 
0.140 0.083 
-0.223 0.004 
-0.175 0.034 
-0.274 0.002 
0.064 0.417 

No 
No 
Yes 
Yes 
No 
No 
No 
Yes 
No 
Yes 
No 
No 
No 
Yes 
No 

Table 3.9 Correlation statistics used to determine magnitude and significance of 
correlation between clinoptilolite and other sorbing or non-sorbing minerals. 

Significant 
Y variable X Variable P Pr(@) r Pr(r-O) Correlation? 

Mineral Pair 

Clinoptilolite Calcite 0.264 0.001 0.317 0.000 Yes 
Clinoptilolite Hematite -0.158 0.073 -0.177 0.045 No 
Clinoptilolite Mica -0.116 0.144 -0.206 0.009 No 
Clinoptilolite Smectite -0.395 0.000 -0.447 0.000 Yes 
Clinoptilolite Dolomite -0.303 0.162 -0.401 0.058 No 
Clinoptiloli te Kaolinite 0.144 0.214 0.198 0.087 No 
Clinoptilolite Glass -0.388 0.000 -0.340 0.000 Yes 
Clinoptilolite Cristobalite -0.449 0.000 -0.468 0.000 Yes 
Clinoptilolite Opal -0.072 0.677 -0.080 0.643 No 
Clinoptilolite Quartz 0.492 0.000 0.567 0.000 Yes 
Clinoptilolite Tridymite 0.342 0.013 0.248 0.077 No 
Clinoptilolite Hornblende -0.3 13 0.000 -0.3 12 0.000 Yes 
Clinoptilolite Orthoclase -0.103 0.196 -0.182 0.022 No 
Clinoptilolite Sanidine 0.106 0.206 0.132 0.1 14 No 
Clinoptilolite Albite 0.086 0.347 0.118 0.193 No 
Clinoptilolite Bytownite -0.212 0.007 -0.381 0.000 No 

3-48 



Table 3.10 summarizes the type of correlation - exactly positive (l), not significant (0), positive 
(+), or negative (-) - between sorbing minerals and other sorbing or non-sorbing minerals. The 
autocorrelations (correlations between the same mineral) are exactly +1.0. Based on Table 3.10, 
several conclusions on the correlation of mineral abundances can be made: 

Only one sorbing mineral, clinoptilolite, shows significant correlation with other 
sorbing minerals - calcite (positive) and smectite (negative). 

The sorbing mineral hematite is not significantly correlated with any other minerals, 
either sorbing or non-sorbing. 

Of the non-sorbing minerals that are sufficiently abundant to test for correlation, only 
two, kaolinite and sanidine, show no significant correlation with any sorbing 
minerals. 

None of the non-sorbing minerals show significant correlation with all sorbing 
minerals. 

Two non-sorbing minerals show significant correlation with the same three sorbing 
minerals - quartz and hornblende (to calcite, mica, and clinoptilolite). Four non- 
sorbing minerals show significant correlation with two sorbing minerals - dolomite 
(to calcite and smectite), cristobalite (to calcite and clinoptilolite), and bytownite (to 
calcite and mica). Four non-sorbing minerals show significant Correlation to one 
sorbing mineral - glass (to clinoptilolite), tridymite (to smectite), orthoclase (to 
calcite), and albite (to smectite). 

For some of these correlations, a geologic and/or geochemical significance can be applied. For 
example, the negative correlation between calcite and bytownite suggests that calcite may have 
formed as a result of weathering of the Ca-rich plagioclase. However, these correlations between 
minerals are rather subtle, are difficult to explain based solely on XRD information, and 
therefore, benefit when evaluated in conjunction with other supportive evidence. Furthermore, 
lithologic characterization of alluvium from the ER-5-4 central Frenchman Flat well in Warren et 
al. (2002) suggests that secondary minerals are not formed in-situ but are instead a part of the 
original mineralogy of the sediments. Thus, geochemical interpretation of sediment alteration 
history at this location reflects the alteration history of the alluvium-forming precursor and not 
in-situ post-depositional alteration processes. Lithologic data for northern Frenchman Flat wells 
(primarily ER-5-3) is limited but suggests possible in-situ secondary alteration. The complex 
history of the sediments and their alteration can best be deciphered using a combination of 
lithologic and petrographic, XRD, SEM, XRF, and microprobe analyses. The results presented 
here suggest that correlations between minerals exist but the correlations cannot be rigorously 
interpreted without a combination of XRD and other techniques. 
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Table 3.10 Summary of types of correlation - exactly positive (1), not significant (blank), 
positive (+), and negative (-) - between sorbing minerals and sorbing or non-sorbing 
minerals. 

+ 

Type of Correlation with sorbing minerals: Any 
Significant 

Mineral Calcite Hematite Mica Smectite Clinoptilolite Correlation? 

Calcite 1 + Yes 
Hematite 1 No 
Mica 1 No 
Smectite Yes 
Clinoptilolite + Yes 
Dolomite + Yes 
Kaolinite No 
Glass Yes 
Cristobalite Yes 
Opal Yes 
Quartz + Yes 
Tridymite Yes 
Hornblende Yes 
Orthoclase Yes 
Sanidine No 
Albite Yes 
B ytownite + Yes 

- 

- 

1 
- 

+ 
1 

+ 
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Figure 3.25 Scatterplots evaluating bivariate correlation between calcite and the sorbing 
minerals hematite, mica, smectite, and clinoptilolite. 
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Figure 3.26 Scatterplots evaluating bivariate correlation between hematite and the sorbing 
minerals calcite, mica, smectite, and clinoptilolite. 
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Figure 3.27 Scatterplots evaluating bivariate correlation between mica and the sorbing minerals 
calcite, hematite, smectite, and clinoptilolite. 
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Figure 3.28 Scatterplots evaluating bivariate correlation between smectite and the sorbing 
minerals calcite, hematite, mica, and clinoptilolite. 
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Figure 3.29 Scatterplots evaluating bivariate correlation between clinoptilolite and the sorbing 
minerals calcite, hematite, mica, and smectite. 
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Figure 3.30 Scatterplots evaluating bivariate correlation between calcite and the non-sorbing 
minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz. 
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Figure 3.31 Scatterplots evaluating bivariate correlation between calcite and the non-sorbing 
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite. 
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Figure 3.32 Scatterplots evaluating bivariate correlation between hematite and the non-sorbing 
minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz. 
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Figure 3.33 Scatterplots evaluating bivariate correlation between hematite and the non-sorbing 
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite. 
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Figure 3.34 Scatterplots evaluating bivariate correlation between mica and the non-sorbing 
minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz. 
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Figure 3.35 Scatterplots evaluating bivariate correlation between mica and the non-sorbing 
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite. 
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Figure 3.36 Scatterplots evaluating bivariate correlation between smectite and the non-sorbing 
minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz. 
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Figure 3.37 Scatterplots evaluating bivariate correlation between smectite and the non-sorbing 
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite. 
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Figure 3.38 Scatterplots evaluating bivariate correlation between clinoptilolite and the non- 
sorbing minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz. 
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Figure 3.39 Scatterplots evaluating bivariate correlation between clinoptilolite and the non- 
sorbing minerals tridyrnite, hornblende, orthoclase, sanidine, albite, and bytownite. 
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3.5 Comparison of Chemofacies with Alluvial Layering 

Based on mineralogic, chemical, and lithologic information, Warren et al. (2002) identified 
several alluvial layers in ER-5-4 and UE-5n. A description of alluvial layering in Frenchman 
Flat may provide a suitable framework for developing three-dimensional models of hydraulic 
and reactive transport properties. To explore this possibility, we compare our interpretations of 
the zonal mean abundances of sorbing minerals with the interpretations of alluvial layering. 

We identify “chemofacies” as vertical intervals or zones of alluvium having similar distributions 
of zonal mean abundances for all sorbing minerals - calcite, hematite, mica, smectite, and 
clinoptilolite. Within a chemofacies, the statistical properties of all five mineral abundances 
appear stationary. Our chemofacies interpretations do not include lithologic interpretations, such 
as consideration of texture, mode of deposition, or elemental analysis of typically mobile or 
immobile elements as considered by Warren et al. (2002). Our chemofacies interpretations are 
strictly concerned with identifying zones of similar distributions of zonal mean abundances of 
sorbing minerals and, therefore, are bound to differ from the more geologically comprehensive 
interpretation of alluvial layering. 

Another potential source of uncertainty in comparing the chemofacies and alluvial layering 
interpretations is raised by the analysis of multiple samples or “splits” obtained from the same 
core. While one split was used to produce XRD data, other splits were used to produce SEM and 
other data, as described by Warren et al. (2002, Section 3.1.2.3). Despite being located only a 
few centimeters apart, the data indicate that split samples within the same core may yield 
significantly different mineral concentrations. Having only a limited number of XRD data for 
sample splits (1 duplicate and 3 triplicate splits), our geostatistical analysis cannot evaluate 
small-scale or “microscale” variability at the scale of centimeters or less. Furthermore, since 
only XRD data were used in the geostatistical analysis, we could not evaluate how different 
methods of analysis (e.g. SEM data) could affect sorbing mineral abundance results. The 
geostatistical analysis in Chapter 5 indicates that significant spatial variability typically exists 
within a scale of about 0.3 m, which is the smallest core sample spacing. Therefore, it would not 
be surprising if, in actuality, the microscale variability of mineral concentrations in Frenchman 
Flat alluvium is relevant over scales less than a few centimeters. In future HST or CAU scale 
modeling, it will be important to recognize the uncertainty in identifying chemofacies or alluvial 
layers based on analysis of a few or sparse samples. Microscale variability and, possibly, 
uncertainty in the methods of analysis themselves may cause considerable uncertainty in 
identifying zones with similar mineral concentrations, 

For the purpose of radionuclide transport modeling at HST or CAU scales, it will be important to 
recognize the potential for differences between interpretations based on alluvial layering and 
interpretations based on zones with different capacities to attenuate or sorb radionuclides. For 
example, if an alluvial layer corresponds to a package of alluvial sedimentation, there may be 
gradations of texture and mineral composition related to the evolution of alluvial deposition over 
time. Alluvial fans are composite features created by episodic accumulation of sediments. 
However, alluvial fans do exhibit systematic depositional patterns. Alluvial fans tend to fine 
outwards and may coarsen or fine upwards. Alluvial fans may consist of different depositional 
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facies such as sheetflood, debris flow, channel and sieve deposits. Playa deposits also occur in 
Frenchman Flat. As a result of a depositional hiatus, caliche layers may occur at the top of a 
package of alluvial sedimentation. Thus, different modes of deposition, various sorting 
mechanisms, and in situ alteration may complicate the spatial distribution of minerals within an 
alluvial layer. On the other hand, two different alluvial layers may possess very similar 
abundances of the sorbing minerals, such that two different alluvial layers could be categorized 
as the same chemofacies. 

Figures 3.40 and 3.41 superpose zonal mean abundances interpreted for ER-5-4 and UE-5n (as 
shown in Figures 3.21 and 3.22) on the alluvial layering interpretation from Warren et al. (2002). 
Each mineral possesses a set of different zonal mean abundances, which were interpreted from 
the depth profiles of mineral abundance (Figures 3.21 to 3.24) and the univariate statistical 
analyses described in sections 3.1 to section 3.3 and summarized in Tables 3.3 and 3.4. In 
Figures 3.40 and 3.41, zonal mean abundances for non-sorbing minerals that exhibit significant 
correlation with at least one sorbing mineral, as indicated by Table 3.10 in section 3.4, are also 
shown to help identify chemofacies. 

In Figure 3.40, the boundaries of alluvial layers for ER-5-4 correspond with many of the abrupt 
shifts in mean abundances of sorbing minerals. Starting from the top, the vertical interval for 
layer 1 is not identified in this study because no XRD data were obtained there. A large increase 
in clinoptilolite abundance distinguishes layers 3 , 4  and 5 from layer 2. Lower calcite abundance 
is evident at the base of layer 5. Layers 6, 7, and 8 exhibit lower clinoptilolite abundance. 
Smectite abundance appears to increase below the middle of layer 7 down through layers 8 and 
9a-c. In layer 9a, clinoptilolite abundance rises slightly, and calcite abundance is very high. 
Hematite abundance distinctively drops between depths of about 760 and 780 m within layer 9a. 
With respect to non-sorbing minerals, layer 9a is clearly distinguished from layers 6, 7, and 8 by 
abrupt decreases in cristobalite, tridymite, hornblende, and orthoclase abundances and increases 
in albite, dolomite, and quartz. Between depths of 780 to 900 m, layers 9a-c are interfingered, 
which is evident by large fluctuations in the zonal mean abundances. Layers 10 and 12 appear 
similar in both sorbing and non-sorbing mineral abundance, with lower smectite and distinctively 
low clinoptilolite abundance. Layer 11 has similar sorbing mineral abundances to layers 10 and 
12, except that clinoptilolite abundance is very high. 

Warren et al. (2002) interpreted a similar sequence of alluvial layers in UE-Sn to a depth of about 
480 m. Figure 3.41 shows zonal mean abundances of sorbing and correlated non-sorbing 
minerals superposed on the alluvial layers. The alluvial layers are deeper in UE-5n and show 
some variations in thickness compared to ER-5-4. In UE-Sn, layer 4 is either absent or 
unresolved. The comparison between ER-5-4 and UE-5x1, though limited by the limited number 
and depth range of samples from UE-Sn, indicates that the alluvial layers exhibit significant 
lateral spatial continuity, on the scale of at least hundreds of meters. Additionally, variations in 
thickness and attitude (e.g., dip and strike of bounding surfaces) of the alluvial layers may need 
to be considered in both HST and CAU scale models. 
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Figure 3.40 Zonal mean abundance of sorbing and correlated non-sorbing minerals in ER-5-4 
superposed on alluvial layers proposed in Warren et ai. (2002). 
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Figure 3.41 Zonal mean abundance of sorbing and correlated non-sorbing minerals in UE-5n 
superposed on alluvial layers proposed in Warren et al. (2002). 

For comparison to the alluvial layering interpretations, Figures 3.42 and 3.43 show our 
chemofacies interpretations for ER-5-4 and UE-5n. The chemofacies appear as vertical zones 
with distinctive sets of zonal mean abundances of sorbing minerals. Only the depth profiles of 
the zonal mean abundances of sorbing minerals are shown because these data distinguish 
different chemofacies. The legends in both Figures 3.42 and 3.43 provide a depth-ordered 
profile of the chemofacies. Some chemofacies may repeat at different depth intervals - 
chemofacies 1 and 2, or example, in ER-5-4. 

Table 3.1 1 summarizes a comparison between the chemofacies interpretations and the alluvial 
layers identified by Warren et al. (2002). Compared to the alluvial layers, chemofacies 1 
corresponds to layers 2 and 6 and the upper portion of layer 7. Chemofacies 2 corresponds to 
layer 3, and chemofacies 3 corresponds to layer 5. A distinctive chemofacies is not associated 
with layer 4. Chemofacies 4, distinguished from chemofacies 1 by low calcite, occurs between 
depths of about 380 to 400 m at the base of layer 6. Chemofacies 5, distinguished by higher 
smectite relative to chemofacies 1, spans layer 8 and the lower portion of layer 7. Chemofacies 
6, distinguished from chemofacies 5 by high calcite, occurs in a thin zone at the top of 
chemofacies 5 near a depth of 500 m. Chemofacies 6 also corresponds with layer 9a, except 
between a depth of 760 and 780 m, where chemofacies 7 is distinguished by lack of hematite. 
Between the depths of 780 to 900 m, a transition zone consisting of a mixture of chemofacies 6, 
7, and 8 is apparent, which corresponds to the interfingering of layers 9a, 9b, and 9c. However, 
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chemofacies 8 continues below a depth 900 m, corresponding to layers 10 and 12, except where 
another occurrence of chemofacies 2 (having high clinoptilolite abundance) corresponds to 
layer 1 1. 

Table 3.1 1 Summary of chemofacies interpretation in ER-5-4, with comparison to alluvial 
lavers identified bv Warren et al. (2002). 
Chemofacies Depth Range(s) in ER-5-4 Alluvial Layer(s) Distinctive Features 

1 190-233; 345-380; 400-500 2 , 6 , 7  (upper) Lower smectite 
2 310-330; 1000-1030 3, 11 High clinoptilolite 
3 330-345 5 Like 2, but low calcite 
4 380-400 6 (base) Like 1, but low calcite 
5 5 10-700 7 (lower), 8 Higher smectite 
6 500-5 10; 700-760 5 (top), 9a (upper) Like 5, but high calcite 
7 760-780 9a (lower) Like 6, but no hematite 

6, 7 , 8  780-900 9a, 9b, 9c 
(interfingering) 

8 900-1000; 1030-1 132 10,12 Like 1, but low clinoptilolite 

Overall, much of the alluvial layering interpretation of Warren et al. (2002) in ER-5-4 
corresponds with our chemofacies interpretations. The differences can be attributed to 

layers that do not appear to have distinctive abundances of sorbing minerals (e.g., 
layer 4 and layer 8), 

chemofacies that compose sub-units within alluvial layers (e.g., chemofacies 6 within 
layer 7 and chemofacies 7 within layer 9a), 

layers that have similar sorbing mineral abundances (e.g., layers 10 and 12 or layer 2 
and the upper portions of layers 6 and 7), and 

combinations of the above. 

The chemofacies interpretation for UE-5n shows a similar depth profile as for ER-5-4. A 
transition zone between chemofacies 1 and chemofacies 2 may be occurring near depths of 290 
to 300 m, but only two XRD data are available in this depth range. Chemofacies 4, which does 
not correspond directly to an alluvial layer, also appears in UE-5n, indicating that this thin zone 
of low calcite abundance could be laterally extensive. 
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Figure 3.42 Zonal mean abundance of sorbing minerals in ER-5-4 superposed on distinctive 
chemofacies zones interpreted in this report. 
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Figure 3.43 Zonal mean abundance of sorbing minerals in UE-5n superposed on distinctive 
chemofacies zones interpreted in this report. 

The chemofacies interpretations were extended to ER-5-3 and U-1 lg-1 in northern Frenchman 
Flat. Of the chemofacies identified in ER-5-4, only chemofacies 1 was found to be applicable to 
ER-5-3 between depths of about 90 to 200 m. This indicates that portions of the upper alluvium 
in both central and northern Frenchman flat are very similar with respect to capacity for sorbing 
radionuclides, but significantly different at greater depths. Between depths of about 200 m to 
greater than 6 10 m, clinoptilolite abundance is consistently high in ER-5-3 relative to ER-5-4. 
Chemofacies 9 is similar to chemofacies 2 in ER-5-4, except that chemofacies 9 exhibits lower 
mica and smectite abundance. Chemofacies 12 is similar to chemofacies 9 except that it exhibits 
lower hematite and higher smectite. Chemofacies 10 and 11 show some similarities to 
chemofacies 7 in ER-5-4, having low hematite and relatively high calcite and clinoptilolite. It is 
possible that these differences could be attributed to lateral gradations within the sequence of 
alluvial deposition. Between depths of about 225 and 360 m in ER-5-3, zonal mean abundances 
of sorbing minerals vary substantially, indicating a transition zone between chemofacies 1, 9, 10, 
1 1, and 12. The three samples from U-1 lg-1 appear to fall into this transition zone, as indicated 
in Figure 3.45. 
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Figure 3.44 Zonal mean abundance of sorbing minerals in ER-5-3 superposed on 
distinctive chemofacies zones interpreted in this report. 
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Figure 3.45 Zonal mean abundance of sorbing minerals in U-1 1 g-1 superposed on 
distinctive chemofacies zones interpreted in this report. 
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In general, the more detailed and comprehensive analysis of Warren et al. (2002) focused on 
identifying distinct packages of alluvial deposits. Our analysis relied solely on mineralogy data 
provided by XRD. Our chemofacies interpretations did not consider all geologic data available 
because its purpose was to interpret geochemical factors affecting radionuclide reactive 
transport - principally, the abundance of 5 sorbing minerals included in our mechanistic model. 
While the interpretation of alluvial layers by Warren et al. (2002) is better suited to define 
provenance and stratigraphy, our statistical analysis of mineral abundance is focused on 
understanding the role that mineral distributions play on radionuclide sorption. The important 
conclusions are: 

Interpretations of alluvial layering, as performed by Warren et al. (2002), could 
provide a useful geometric framework for modeling major spatial variations in the 
abundances of radionuclide-sorbing minerals. 

Some zones or sub-units within the alluvial layers may need to be distinguished for 
purposes of reactive transport modeling based on distinctive differences in 
abundances of sorbing minerals. 

Some alluvial layers may possess effectively the same distribution of zonal mean 
abundances of sorbing minerals. Unless bulk density and porosity are significantly 
different, it may be plausible to use the same retardation factors for different alluvial 
layers of the same chemofacies in CAU or HST scale particle-tracking transport 
simulations. 

In some sections of the alluvial sequence, complex interfingering of different 
lithologies occurs, resulting in large fluctuations in abundances of sorbing minerals. 
These “transition zones” are bound to be heterogeneous in both hydraulic and reactive 
transport properties. For HST models, it may be essential to consider such 
heterogeneity if radionuclide transport is expected to occur there. 

0 In developing CAU scale three-dimensional models, with or without consideration of 
interpretations of alluvial layers or chemofacies, some consideration for lateral 
gradations of sorbing mineral abundances should be included. 

The chemofacies interpretations we have made are intended to provide an illustrative 
example for identifying zones with distinctive abundances of sorbing minerals within 
the alluvium in Frenchman Flat. Certainly different interpretations of lesser or 
greater detail could be made. 
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4 Sorption Modeling and Estimating Kd 

Our evaluation of mineral abundance discussed in Chapter 3 provides an overall description of 
mineralogic heterogeneity in Frenchman Flat alluvium. The mineralogic information can be 
used to evaluate depositional patterns within alluvium. Moreover, the data may also assist in 
developing a framework for understanding the lateral and vertical continuity of depositionally 
and mineralogically distinct zones or layers which may have unique radionuclide transport 
characteristics. We define the description of zones or layers based on spatial distribution of 
sorbing mineral abundances as a chernofucies approach. Warren et al. (2002) used mineral 
abundance information along with petrographic and other information to describe alluvial 
layering. In Section 3.5, we compared the alluvial layer interpretations in ER-5-4 and UE-Sn to 
our interpretations of chemofacies which were based entirely on abundances of radionuclide 
sorbing minerals. 

In this chapter, we evaluate the same mineral abundance data from a radionuclide retardation 
perspective instead of a mineralogic perspective. The distribution coefficient (Kd) can be used to 
account for retardation of radionuclide transport in conjunction with either of two conceptual 
approaches to modeling spatial variability of Kd discussed in Chapters 5 and 6: 

Combine chemofacies and alluvial layering interpretations to define zones with 
relatively constant mineral abundances and Kd - the chemofacies approach. 

Treat Kd as a random field - the random field approach. 

In a reactive transport modeling approach assuming zonal spatial variation of sorbing minerals, 
either mechanistic or Kd approaches may be used to simulate retardation of radionuclide 
transport. In this chapter, we discuss the mechanistic approach only as it relates to the 
calculation of Kds. 

Regardless of its ultimate use, the method used to convert abundances of radionuclide sorbing 
minerals to Kds is the same. The discussion of Kd variability in this chapter parallels the 
mineralogic discussion in Chapter 3; we discuss only univariate and bivariate statistics as a 
preliminary step to performing variogram analysis of spatial variability of Kd. The results of the 
variogram analyses in Chapter 5 are applied to generation of random fields of & in Chapter 6. 

In a recent report, Zavarin (2002) proposed linking radionuclide Kds used in large-scale CAU 
models (the Kd approach) to a mechanistic surface complexatiodion exchange radionuclide 
sorption model (the mechanistic approach).' The mechanistic sorption model was developed for 
near-field hydrologic source term (HST) modeling of reactive transport (most recently used in 
Pawloski et al., 2001). The mechanistic sorption model accounts for effects such as changing 

For the link to be valid, the following assumptions need to be made: constant groundwater solution composition, 
constant temperature. constant pH, constant groundwater redox state, constant mineralogy, and radionuclide 
concentrations well below concentrations at which non-linear sorption and/or radionuclide precipitation would be 
expected. 
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groundwater conditions on radionuclide sorption to mineral surfaces. As such, it provides a 
robust description of radionuclide sorption. The benefits of linking the large-scale CAU model 
Kd approach to the mechanistic approach are the following: 

Kds used in large-scale models would be based on a technically defensible 
mechanistic sorption model, and 

K d  used in large-scale models would be directly linked to the mechanistic sorption 
model used in near-field HST models. 

Several recent reports describe the mechanistic sorption model used in near-field HST 
calculations (Zavarin and Bruton, 2000a; 2000b), employ the mechanistic sorption model in 
near-field HST calculations (Pawloski et al., 200 l), validate the mechanistic sorption model 
parameters (Zavarin et al., 2002), and describe how one may link &s to the mechanistic sorption 
model (Zavarin, 2002). These topics will not be repeated here but a brief description of the 
methods used to develop Kds follows. 

4.1 Mechanistic Sorption Model-based K& 

4.1.1 Radionuclide Species and Radionuclide-Sorbing Minerals 

At present. the mechanistic sorption model used in near-field HST calculations includes Am, Ca, 
Cs, Sr, Eu, Sm, Np, PU, and U radionuclides7 and iron oxide, smectite, zeolite, illite, and calcite 
minerals (Table 4.1). While this database is quite substantial, there are limitations to it. The 
completeness of the radionuclide list is dependent on the radiologic source term being evaluated. 
For example, a recent near-field HST modeling report (Pawloski et al., 2001) included the 
following radionuclides as pertinent to the Pahute Mesa HST: 3H, I4C, 36Cl, 39Ar, 4'Ca, 59*63 Ni, 
8 5 ~ ,  90sr, 9 3 2 ,  93.94Nb, 99Tc, 107pd, 121,126 129 135,137 151 150,152.154 166 238.239..2403241pu, Sn, 2 4 1 h ,  I, and 2 4 4 ~ ~ .  Cs, Sm, Ofthose, 3 ~ ,  Eu, 14c, 36~1, Ho, 3 9 ~ ,  8 5 ~ ,  

U, 237Np, 232.233.234.235,236.238 

"Tc, and 12'1 were modeled as tracers because they were not ex ected to sorb strong1 to any 
minerals in NTS 

The behavior of 166Ho, and 244Cm was based on the behavior of Eu since these trivalent cations 

not be modeled correctly because their behavior was not included in the mechanistic model. 
These radionuclides are missing from the mechanistic model due to a combination of data 
limitations and mechanistic sorption model development time constraints. Evaluation of their 
sorption behavior should be included in future versions of the mechanistic sorption model. 

B Eu, , Sm, 9 roundwater. 41ca, W s r ,  1 3 5 . 1 3 7 ~ ~  151 150,15 ! ,154 232,233.234,235,23 , 2 3 8 ~  

Pu, and 241Am sorption was modeled based on the mechanistic sorption model. 237NP, 238.239.240.2 LF 1 

Sn could are expected to have similar chemistry. However, 59363Ni, 93Zr, 93.94Nb, lo7Pd, and 121,126 

Note that radionuclide isotopes of the same element are assumed to behave identically. The mechanistic model 
does not distinguish between isotopes of a particular element. 

4-2 



An additional missing aspect of the mechanistic sorption model is the absence of manganese 
oxide radionuclide sorbing minerals. Manganese oxides can be strong radionuclide sorbers 
(Duff et al., 1999). However, Frenchman Flat alluvium data suggest that manganese oxides are 
not present in significant abundance (see Warren et al., 2002). While the absence of manganese 
oxides in the mechanistic sorption model may be an issue for areas of the NTS where manganese 
oxides are prevalent (Le. fracture coatings in certain Pahute Mesa locations), it is not a 
significant issue for Frenchman Flat alluvium. 

The aluminosilicate mineralogy of Frenchman Flat alluvium is composed of a large number of 
heterogeneously distributed minerals and glasses (e.g. K-feldspar, plagioclase, glass, cristobalite, 
opal, quartz, tridymite, hornblende, kaolinite, zeolite, mica, smectite). However, the mechanistic 
sorption model accounts for only smectite, mica, and a zeolite (clinoptilolite). While the other 
aluminosilicate minerals may contribute to radionuclide surface complexation or ion exchange to 
some degree, it is likely that the aluminosilicate minerals included in our model are the dominant 
aluminosilicate radionuclide sorbers. For example, the ion exchange capacity of zeolite, mica, 
and smectite far outweighs the ion exchange capacity of kaolinite (the only other significant ion 
exchanger in Frenchman Flat alluvium). Furthermore, the very high surface area of smectite is 
likely to result in its dominance over all other aluminosilicate minerals with respect to surface 
complexation. This is consistent with our recent measurements of BET surface area of alluvium 
from UE-Sn and U-la which suggest that the surface area of smectite dominates the total 
alluvium BET surface area (unpublished data). 

Table 4.1 Surface complexation (SC) and ion exchange (IE) reactions included in the 
mechanistic sorption model. 

Zeolite Illite/mica Smectite Iron oxide Calcite 
Ca 
c s  
Sr 

Am 
Eu 
Sm 

NP 
U 

IE 
IE 
IE 

IE 
IE 
IE 

IE sc 
IE 
IE sc sc 
sc sc sc 
sc sc sc 

sc sc sc 
sc sc sc 

scq scq sc 

Pu sc sc sc 
Samarium sorption to smectite and iron oxide was estimated based on analogy to europium because 

published sorption data were not available. 

4.1.2 Radionuclide-Mineral K& 

In the mechanistic sorption model, radionuclide sorption is a function of the fluid composition, 
the sorbing mineral properties (cation exchange capacity, surface area, reactive site density), and 
the surface complexatiodion exchange constants that govern radionuclide sorption affinities. To 
predict radionuclide sorption, all these factors must be evaluated. The fluid composition for 
Frenchman Flat alluvium was based on Rose et al. (1997) and additional unpublished LLNL 
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groundwater analyses from various wells located in Frenchman Flat alluvium (average reported 
in Table 4.2). Speciation of radionuclides in Frenchman Flat groundwater was accomplished 
using the GEMBOCHS database (Johnson and Lundeen, 1989) with revisions as noted in 
Zavarin and Bruton (2000a; 2000b). The sorbing mineral properties were based on published 
data and our recent model validation experiments performed on Yucca Flat and Frenchman Flat 
alluvium (Zavarin et al., 2002). These experiments indicated that published surface areas and 
cation exchange capacities may be too high for certain minerals. The reduced reactive surface 
areas and cation exchange capacities may relate to mineral accessibility issues which are not 
accounted for directly in this report. However, the adjustment of surface areas and cation 
exchange capacities based on validation experiments indirectly (and qualitatively) accounts for 
the effect of mineral accessibility on radionuclide sorption. The surface complexatiodion 
exchange constants that govern radionuclide sorption affinities were developed based on non- 
electrostatic surface complexation and Vanselow ion exchange (Zavarin and Bruton, 2000a; 
2000b). Model validation experiments performed on Yucca Flat and Frenchman Flat alluvium 
(Zavarin et al., 2002) indicated that some ion exchange constant adjustment is necessary to 
accurately predict radionuclide sorption to these sediments. All adjustments suggested in 
Zavarin et al. (2002) are included in the calculations presented here. The radionuclide-mineral 
Kds based on our mechanistic model are summarized in Table 4.3. For details regarding the 
process used to calculate these Kds based on the mechanistic sorption model, see Pawloski et al. 
(2001) and Zavarin (2002). 

Table 4.2 Fluid composition used in mechanistic sorption model, 
Concentration+ 

PH 8.4a.3’ 

F 
Na’ 
K’ 

mg/kg 
1 .1a .3  
79k26 
6.7k1.0 

Mg” 2.8+1 .7 
Caz+ 
Sr” 

12.0k4.7 

c1- 13.2k3.5 
HCO3- 1 9 0 6 2  
s04:- 34.8k8.7 
Si02 56k2 1’ 

’ Average based on Rose et al. (1  997) and additional unpublished LLNL data. 
’ Uncertainty (21 SD) determined from analyses of a number of groundwater samples. 

Data regarding Si was not reported; value of F (1999) was used. 
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Table 4.3 K& based on the mechanistic sorption model. 
Zeolite Iron Oxidel 

Calcite (clinoptilolite) (hematite) Micdillite' Smectite 
.................................... Log (Kd)  ................................... 

Am 4.30 3.23 4.72 
Ca 0.44 3.5 1 2.33 2.67 
c s  3.47 5.45 2.80 
Eu 4.02 2.9 1 3.92 
NP 1.58 1.95 1.23 
pu (02 = 10-~)§ 1.20 '1.99 1.77 
Pu ( 0 2  = 1.69 
pU (02 = 10-l~) 2.30 

2.48 
3.07 

2.15 
2.60 

Sm 4.56 3.08 4.09 
Sr -1.31 3.29 -0.02 2.32 2.27 
U -3.07 1.83 0.79 
' Pu Kds determined at three 02(g) fugacities : lo-', IO-", and 
suggested in Zavarin et al. (2002) to evaluate the effect of Pu redox state on transport. 
' Mechanistic sorption model is based on hematite. However, XRD analysis did not distinguish between 
hematite. goethite, hydrous femc oxide, magnetite, ilmenite, maghemite, or pseudobrookite iron oxides. We 
assume in our model that all iron oxides behave similarly. 
' Mechanistic sorption model is based on illite. However, XRD analysis did not distinguish between illite and mica. 
We assume in our model that these two minerals behave similarly. 

bars. The range of O&) fugacities was 

4.1.3 Radionuclide-Alluvium K& 

Based on the Kds in Table 4.3, we can employ the component additivity approach to predict 
radionuclide K d s  as a function of alluvium mineralogy. The component additivity approach 
(Zavarin, 2002) relies on the principal that the radionuclide K d  for a particular alluvium 
mineralogy is simply the sum of individual K d  contributions from the various radionuclide 
sorbing minerals in the alluvium. Thus, based on the data in Table 4.3, the K d  (mug)  for each 
radionuclide under specific mineralogic conditions is defined by: 
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wherefis the mineral mass fraction in the alluvium. 

4.2 Histograms and Lateral Variation of Kd 

In Figures 4.1 to 4.11, histograms of Kds are plotted on a log scale for each radionuclide. 
Separate histograms are shown for XRD data from all drillholes and for XRD data from 
drillholes ER-5-4, UE-Sn, ER-5-3, and U-1 lg-1 individually. The log scale (versus linear) is 
useful because 

it helps span the wide variation in Kd for different radionuclides (over 5 orders of 
magnitude), 

the K d S  tend to be distributed as log-normal, and 

0 stochastic models of Kd usually assume a log-normal distribution. 

The histograms are useful for examining the variation of Kd in several ways: 

to illustrate the range of Kds for the radionuclide, 

to illustrate the most frequent KdS for the radionuclide, 

to examine the shape of the distribution compared to a log-normal (Gaussian) 
distribution, and 

to examine the possibility of bi-modal or multi-modal distributions. 

Drillholes ER-5-4 and UE-5n are situated in central Frenchman Flat, and drillholes ER-5-3 and 
U- 1 lg- 1 are situated in northern Frenchman Flat. Comparison of the histograms for drillholes in 
different locations is useful for examining how K d  varies (or does not vary) laterally as a result of 
changes in sorbing mineral abundances.8 These drillhole locations are sufficiently distant to 
detect lateral variations or trends in Kd, should they exist in Frenchman Flat. The issue of 

* Note, however. that we have not evaluated whether changes in groundwater chemistry in Northern and Central 
Frenchman Flat would have an additional effect on radionuclide retardation. In this report, we assume that the 
groundwater chemistry in all of the Frenchman Flat alluvium is essentially identical. Thus we are evaluating the 
effects of mineral variability only. Other effects such as groundwater composition changes may further affect Kds. 

This is particularly the case when approaching the carbonate aquifer whose groundwater chemistry is believed to be 
quite different. 
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laterally varying K d  is of potential concern for Corrective Action Unit (CAU) scale radionuclide 
transport modeling efforts in Frenchman Flat. If significant lateral variations or trends in Kd 

exist, CAU scale models may need to provide enough model resolution to account for 
differences in radionuclide transport properties as a function of alluvium location. If, however, 
radionuclide retardation is relatively uniform in Frenchman Flat alluvium, spatially 
heterogeneous radionuclide retardation information may not be necessary to consider at the CAU 
scale. Heterogeneous lateral Kds may also be of concern for near-field HST modeling efforts 
because K d  variability may impact categorization of underground nuclear tests. 

To address modeling issues related to K d  for different radionuclides, we first examine the 
histograms of K d  for radionuclides Am, Ca, Cs, Eu, Np, Pu, Sm, Sr, and U, as shown in Figures 
4.1 to 4.1 1. The main issues of concern are the magnitude and spread of Kds, which are indicated 
by the mean and standard deviation statistics. The coefficient of variation, which is the standard 
deviation divided by the mean, indicates the range of spread in the distribution, where a value of 
1 .O or greater indicates a wide spread. All of the histograms of Kd have a coefficient of variation 
less than 1.0, indicating that the Kds typically have a relatively narrow range. Other statistics 
included on the histograms are the minimum and maximum values, lower and upper quartiles 
(25'h and 75" percentiles), and median (50" percentile). A bell-shaped distribution on the log 
scale indicates a log-normal distribution of K d .  A bi- or multi-modal distribution is indicated by 
two or more peaks in the frequency distribution. Lateral variation is indicated if the mean values 
and shapes of the distributions are significantly different for data from different drillhole 
locations. Table 4.4 summarizes our interpretation of the radionuclide Kd histograms for the 
XRD data from all drillholes. Our interpretations of distribution shapes are based on visual 
inspection. 

Table 4.4 Summary interpretation of radionuclide K d  histograms. 

Radionuclide (mug)  (mug)  Normal? Modal? Modal? Variation? 
Am 8280 4610 Yes No No No 
Ca 392 345 No Yes No Yes 
c s  10100 4770 Yes No No Yes 
Eu 1700 1100 Yes No No No 
NP 4.68 3.14 Yes No No No 
pu(02= 5 9.37 4.85 Yes No No No 
Pu(O~=lO-'o) 23.4 12.1 Yes No No No 
pu(0~=10-~~) 70.2 36.2 Yes No No No 
Sm 3560 2870 Yes No No No 
Sr 225 2 10 No Yes No Yes 
U 1.15 0.49 Yes No No No 
' Pu Kds determined at three 02(g) fugacities : lo-', lo-", and 
fugacities was suggested in Zavarin et al. (2002) to evaluate the effect of Pu redox state on transport. 

Mean 0 Log- Bi- Multi- Lateral 

bars. The range of 02(g) 
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Most of the Kd distributions for different radionuclides, namely Am, Eu, Np, Pu, Sm, and U, 
appear to be well characterized by a log normal distribution and exhibit no significant lateral 
variation. For these radionuclides, a stationary stochastic model of Kd variation for Frenchman 
Flat based on a log-normal distribution may be a valid model assumption. 

The exceptional radionuclides are Ca, Cs, and Sr. The retardation of these radionuclides is 
dominated by ion exchange reactions rather than surface complexation reactions. The dominant 
ion exchanging minerals include smectite, clinoptilolite, and illitelmica. Both Ca and Sr exhibit 
a notable bi-modal shape in the histogram for all XRD data. The higher Kds for Ca and Sr tend 
to occur in northern Frenchman Flat (in drillholes ER-5-3 and U-1 lg-1) and the lower values in 
central Frenchman Flat (in drillholes ER-5-4 and UE-5n). This difference is primarily attributed 
to differences in zeolite (clinoptilolite) abundance, which tend to be greater in the northern 
Frenchman Flat drillholes. This is consistent with Kd data listed in Table 4.3, which shows that 
Ca and Sr have a greater affinity for zeolite (clinoptilolite) than for any other mineral in the 
model. Therefore, large-scale spatial variation of zeolite is a key issue to consider for Ca and Sr 
transport modeling in Frenchman Flat. Although the frequency distribution of Kd for Cs appears 
log-normal at different locations, some lateral variation in the mean Kd is evident. The mean K d  

for Cs in the central Frenchman Flat drillholes (ER-5-4 and UE-5n) is about 11,300 m u g ,  and 
the mean Kd for Cs in the northern Frenchman Flat drillholes (ER-5-3 and U-11s-1) is about 
7220 m u g .  This difference is attributed to a larger abundance of illite/mica in the central 
Frenchman Flat drillholes. However, the difference is not large when compared to the range of 
variation of Kd observed in within either the central and northern Frenchman Flat drillholes. 
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Figure 4.1 Log-scale histograms of Kd for Am based on XRD data for all drillholes and ER-5-4, 
UE-5n, ER-5-3, and U-1 lg-1 individually. 
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Figure 4.2 Log-scale histograms of Kd for Ca based on XRD data for all drillholes and ER-5-4, 
UE-5n, ER-5-3, and U-1 lg-1 individually. 
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U E h ,  ER-5-3, and U-1 1 g-1 individually. 
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Figure 4.4 Log-scale histograms of Kd for Eu based on XRD data for all drillholes and ER-5-4, 
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Figure 4.6 Log-scale histograms of Kd for Pu(O2=-5) based on XRD data for all drillholes and 
ER-5-4, UE-5n, ER-5-3, and U-11 g-1 individually. 

4-14 



NunberolDats 183 

t 

n 

IIII 

-f l l l l l l l l i  

Kd Pu(02=.10) 

3 n 
-1 

O r n i  0 loo 

Kd Pu(O2-lo) Kd Pu(02=-10) 

Figure 4.7 Log-scale histograms of Kd for Pu(O2=-10) based on XRD data for all drillholes and 
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Figure 4.8 Log-scale histograms of Kd for Pu(O2=-15) based on XRD data for all drillholes and 
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Figure 4.9 Log-scale histograms of Kd for Sm based on XRD data for all drillholes and ER-5-4, 
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4.3 Vertical Kd Variability 

The potential for vertical variability of Kd is of concern for both CAU and HST scale radionuclide 
transport modeling efforts. Contaminant source location is obviously related to test depth, which 
both CAU and HST scale models must consider. As indicated from the XRD data, mineralogy can 
vary significantly with depth, particularly in certain zones (see Chapter 3) or alluvial layers (Warren 
et al., 2002). To address the long-term issue of potential downward and lateral migration of 
radionuclides out of Frenchman Flat alluvium toward deeper aquifers, vertical variation of Kd may 
need to be addressed. Spatial variation of &, in general, will tend to produce a dispersive effect on 
radionuclide transport (Garabedian et al., 1988; Tompson, 1993; Abulaban and Nieber, 2000). 

Radionuclides may be transported several hundred meters vertically within several years 
following an underground nuclear test. Vertical transport has been documented by migration of 
radionuclides away from the Benham test (Kersting et al., 1999) and downgradient radionuclide 
sampling and HST modeling of the Cheshire test at Pahute Mesa (Erikson, 1991; Pawloski et al., 
200 1). This vertical radionuclide transport results from an upward component of groundwater 
flow. In addition to naturally occurring mechanisms for upward groundwater flow, such as 
faults, heterogeneity, or geothermal gradients, the underground nuclear test itself may cause 
vertical groundwater flow through a combination of test-induced effects, such as the collapse 
chimney, fractured zones, test pressure, and test heat (Pawloski et al., 2001). As shown in 
Section 4.2, the Kd histograms for mineral abundance data from drillholes ER-5-4, ER-5-3, 
UE-Sn, and U-1 lg-1 exhibit uni- or bi-modal log-normal distributions. In the following sections, 
we examine vertical variability of Kd in these drillholes as a function of depth. The Kd data are 
presented in both log and linear scales to facilitate interpretation of the data. A variogram 
analysis of vertical spatial variability of Kd is presented in Chapter 5. 

4.3.1 Log-Scale Vertical K d  Variability 

Figure 4.12 plots Kd for radionuclides on a log scale versus depth. The Kds are derived by 
application of the XRD mineral abundance data to the equations given in Section 4.1.3. In 
addition to illustrating the wide range in magnitude of Kd for different radionuclides, these plots 
show that Kd generally varies within one order of magnitude for each radionuclide (also indicated 
by histograms presented in Section 4.3). Some of the larger-scale variations can be traced to 
zones described in Chapter 3, such as depth intervals in drillhole ER-5-4 with high abundances 
of clinoptilolite at 3 10-340 m depth and calcite at 700-780 m depth. Kds for Ca and Sr, the two 
radionuclides with pronounced bi-modal Kd distributions, exhibit a strong dependence on the 
abundance of clinoptilolite. The relatively higher mean value of Kd for Cs in drillhole ER-5-4 
compared to ER-5-3 can be attributed to higher mica abundances in the depth range of 320 to 
430 m in ER-5-3. K d S  appear to correlate between drillholes ER-5-4 and UE-5n at similar 
depths, as well as between drillholes ER-5-3 and U-1 lg-1. This apparently localized lateral 
correlation is examined more closely in the next section. The spatial distribution of &s exhibits 
a combination of structured and random variability. Because the Kds are a function of several 
mineral abundances, spatial variation of Kd over the entire alluvial section appears to behave 
more as a random field compared to spatial variation of abundance of individual minerals, which 
is more directly linked to mineralization zones or alluvial layers. 
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Figure 4.1 2 K& of all radionuclides plotted on log scale versus depth at locations having XRD 
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4.3.2 Linear-Scale Vertical K d  Variability 

Figures 4.13 to 4.15 plot Kd as a function of depth on a linear scale for different radionuclides, 
with Kds from the different drillholes on the same graph. These plots permit close examination 
of the lateral correlation of Kd between drillholes for different radionuclides. The radionuclide 
Kds correlate well between drillholes ER-5-4 and UE-5n in central Frenchman Flat and between 
drillholes ER-5-3 and U-1 lg-1 in northern Frenchman Flat. The major variations in Kd with 
depth can be related to the mineralization zones described in Chapter 3, which are related to the 
alluvial layers identified by Warren et al. (2002). For example, the high Sr KdS between 320 and 
340 meters in ER-5-4 can be attributed to high clinoptilolite abundance in that zone. Similarly, 
high Am, Eu, Sm, Np, and Pu Kds between 700 and 900 meters in ER-5-4 can be attributed to 
high calcite abundances in that zone. These layers appear to be laterally extensive, but not over 
the entire extent of Frenchman Flat. The Kd correlations between wells are complicated by the 
fact that predicted Kds are a function of a combination of minerals weighted by their respective 
radionuclide affinities. Correlations between the wells are more easily observed where 
mineralogy is examined directly (Chapter 3). Since the Kds are based on the abundance of a 
combination of minerals, radionuclide Kd variability is buffered to some degree.’ Regardless, it 
is important to view these data in the context of radionuclide retardation as this will be principle 
parameter controlling the transport of radionuclides in the near- and far-fields. Based on these 
Kd data, it appears likely that vertical Kd variability will affect radionuclide transport for some 
radionuclides. 

It is important to remember that the variability in Kd discussed in this report is based on a 
component additivity approach that assumes that the affinity of a radionuclide for a mineral 
surface under the specified average solution conditions does not change. Thus, is assumes that 
the Kd of Sr with regards to clinoptilolite is identical throughout the Frenchman Flat alluvium. 
The Sr & with respect to the alluvium varies only as a function of the mass fraction of sorbing 
minerals in the alluvium. We do not account for possible changes in Kd that might result from 
changes in the accessibility of sorbing minerals. For example, the clinoptilolite in the high 
zeolite zone (320 to 340 meters in ER-5-4) may be less accessible or behave differently 
compared to the clinoptilolite in the low zeolite zones. The predicted Kds discussed here are 
based on the upscaled mechanistic component additivity approach described earlier in this 
chapter. This approach has a number of limitations that should not be ignored. 

The pattern of Kd variability suggests that smaller scale HST models might incorporate vertically 
zoned variations of Kd based on alluvial layers or chemofacies. As for larger-scale CAU models, 
consideration of vertically zoned variation of &would require additional knowledge or 
assumptions about the lateral extent of the alluvial layers. Alternatively, spatial variation of Kd 
might be plausibly considered at the CAU-scale by assuming a stochastic random field based on 
a log-normal distribution for the radionuclides Am, Eu, Np, Pu, Sm, and U. For Ca and Sr, some 

Buffering refers to a concept that large variability in, for example, clinoptilolite abundance may not Y 

completely dominate Kd variation for Sr because other minerals, such as srnectite, will tend to 
compensate for the large variations in clinoptilolite, resulting in a more uniform Kd. 
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additional assumptions about large-scale spatial variation of zeolitized zones may need to be 
considered. Alternatively, the more conservative region of the bi-modal log-normal distribution 
may be used. For Cs, some additional assumptions about large-scale spatial variation of mica 
may need to be considered. On the other hand, histogram data suggest that the lateral variations 
of Kds for Cs may not be significant compared to the localized variation. These zonal and 
random field approaches to simulating spatial variation of K d  are further discussed in Chapter 6. 
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Figure 4.1 4 Kd for Ca, Cs, Sm, and Sr plotted on linear scale versus depth for ER-5-4, ER-5-3, 
UE-5n, and U-11 g-1. 
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5 Variogram Analysis 

This chapter applies the geostatistical technique of variogram analysis to quantitatively evaluate 
spatial variability of mineral abundance and K d  within Frenchman Flat alluvium. In application 
to the XRD mineral abundance data, “experimental” variograms are computed in the vertical 
direction for logarithms of mineral fractions within each of the mineralization zones identified in 
Chapter 3. The variogram analysis indicates that for all minerals except hematite, the spatial 
variability of mineral abundance within a mineralization zone is mostly attributable to micro- 
scale variability. The term “micro-scale’’ variability refers to spatial variability at a scale that is 
smaller than the minimum data spacing, which ranges from about 0.3 to 3 m depending on the 
mineral. 

In application to the loglo[Kd] values derived in Chapter 4, experimental variograms are 
computed in the vertical direction for each radionuclide. Variogram models indicate that spatial 
variation of Kd is attributed in part to micro-scale variability and in part to subregional-scale 
spatial variability related to mineralization zones or alluvial layers. The term “subregional- 
scale” refers to spatial variability at scales smaller than the region of interest, which is the 
northern portion of the Frenchman Flat basin. Lateral variogram models of loglo[&] could be 
inferred by combining vertical variogram parameters with experimental lateral-direction 
variogram values obtained by comparing data from drillholes ER-5-4 and UE-5n. 

5.1 Variogram Theory 

Different bivariate statistics (e.g., spatial covariance, spatial correlation, or variogram) can be 
used to quantitatively characterize spatial variability of a geologic attribute such as mineral 
abundance or Kd. These statistics are spatially dependent because they are formulated as a 
function of “lag” or vector separation between data from different locations. In practice, the 
variogram is usually employed instead of spatial covariance or correlation to allow for 
consideration of nonstationarity in the mean. 

Variogram analysis is most successfully applied in directions were data are aligned so that 
numerous data pairs exist for a given lag. In most subsurface applications, the vertical direction 
is most conducive to variogram analysis, given borehole data. Lag spacing is chosen by 
considering data spacing and number of data pairs per lag. The maximum practical magnitude of 
the lag is dictated by the spatial extent of the domain or “zone” of interest. Usually, lags with 
magnitude of Yz or greater the spatial extent of the domain are subject to error. For example, if 
data are collected in a vertical borehole at 1 m spacing in a 100-m-thick zone with uniform 
statistical properties, then the variogram analysis could be performed in the vertical direction at 1 
m spacing, but variogram values for lags greater than 50 m would likely be subject to error. 
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5.1.1 Stationarity 

As discussed in Chapter 3, the issues of stationarity and normality are crucial to performing a 
geostatistical analysis of spatial variability. For that reason, this study carefully examined the 
frequency distributions and zonal variations of mean mineral abundances in Chapter 3. To 
review, the concept of stationarity in a geostatistical context means that the statistical measures 
used to characterize the spatial variability of the data are constant, do not depend on location 
within the region being characterized, and depend only on the lag vector. Usually, only first- and 
second-order statistics are employed (e.g., mean, covariance, variogram, etc.), with the 
assumption that the frequency distribution is approximately normal. 

If the data are truly second-order stationary (mean and covariance are stationary), either the 
spatial covariance or variogram will yield effectively the same measure of spatial variability. 
However, in many earth science applications, the mean of the data may vary smoothly (exhibit a 
trend). In this case, the variogram, which employs the concept of “intrinsic stationarity” to allow 
for nonstationarity of the mean, is a more robust measure of spatial variability. Therefore, the 
variogram, rather than the spatial covariance or correlation, is usually applied to the analysis of 
spatial variability of geologic attributes. 

5.1.2 Variogram Formulation 

The variogram (or semivariogram), y(h) , is defined by 

1 
2 

y(h) = -E{[V(x) - V(x + h)I2} 

where V(x) is the random variable (e.g., mineral fraction or Kd) at a location x, and h is the lag 
(separation vector between data at two different locations). In words, the variogram is the 
expected value of one-half the squared difference of data values at different locations separated 
by a vector of variable magnitude and direction. Ideally, as shown in Figure 5.1, the variogram 
magnitude is zero or small at h = 0 (the “nugget”) and rises in magnitude with increasing h until 
asymptotically reaching a plateau (the “sill”) at a lag beyond which the variogram does not 
increase much in magnitude (the “range”). The range of spatial correlation is indicated by the 
variogram “range.” The magnitude of the nugget indicates the degree of spatial variability 
attributed to very small scale or “micro-scale” variability. The sill indicates the magnitude of 
variability attributed to the total of micro and subregional-scale (within the region of interest) 
variability. If the data are second-order stationary, the magnitude of the sill will correspond to 
the variance. If the mean varies with location or a trend exists in the data, the variogram sill may 
not match the variance of the data at large h. 
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Figure 5.1 Schematic showing variogram attributes: nugget, sill, and range. 

5.1.3 Variogram Estimation 

In practice, experimental variogram values are usually estimated from 

where 

N(h) is the number of data pairs separated by a lag h, and 
v, (x) and v I  (x + h) is the ith data pair having a separation of h. 

An important consideration for obtaining successful variogram estimates is to have enough data 
pairs for each lag of interest. If the number of data pairs is inadequate, the experimental 
variogram may appear scattered or noisy. Typically, at least 20 data pairs are needed to yield 
reasonably accurate variogram value estimates for a single lag. 

In most applications, including this study’s, the data are not regularly spaced. Therefore, it is 
necessary to allow for a range of lags to estimate each value of y(h) . Usually, each value 
of y( h) is computed over a range of h, and the average value of h is used in presentation of the 
experimental value of y(h) . In this study, the ranges of h were allowed to vary to obtain a 
minimum number of data pairs. These ranges of h varied for different mineralization zones 
because of differences in the amounts of data and spacing of data pairs. 
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5.2 Application to Mineral Abundances within Mineralization Zones 

As discussed above and in Chapter 3, the interpretation and identification of mineralization zones 
was implemented given the fact that the mineral abundance data exhibit zonal variations with 
depth. These zonal variations were evident by significant and abrupt shifts in the mean value or 
variance of mineral abundances. From a geostatistical perspective, these shifts in the mean 
values of mineral abundances represent a nonstationarity that required sorting of the data into 
different categories within which intrinsic stationarity could be assumed. Intrinsic stationarity 
could not be assumed throughout the entire depth because of the abruptness of the changes in 
mean values and nonstationarity of variance. 

Based on geostatistical theory and the analysis of univariate statistics given in Chapter 3, it is 
reasonable to assume that spatial variation of logarithms of mineral fraction within each 
mineralization zone can be characterized by a variogram. Because the data were sampled from 
multiple locations in vertical drillholes, the data provide excellent coverage for examining vertical 
spatial variability of mineral abundances over scales of meters to hundreds of meters. 
Implementation of variogram analysis to examine lateral spatial variability of mineral abundances 
is thwarted by the limited number of drillholes having abundant XRD data as obtained from 
drillholes ER-5-4, ER-5-3, and UE-5n. Only data from drillholes ER-5-4 and UE-5n provide 
significant numbers of data for evaluation of lateral continuity of mineral abundances. However, 
these two drillholes provide information at only one lag vector. Ideally, similar spatial density of 
mineral abundance data obtained from several closely-spaced (e.g., 0.1 to 2 km) drillholes might 
be used to quantitatively and directly evaluate lateral spatial variability of mineral abundance. 

5.2.1 Vertical Variograms of Log Mineral Abundance 

Figures 5.2 to 5.5 show experimental variograms for logarithms (base 10) of mineral abundances 
within each mineralization zone identified in Chapter 3. The experimental variogram values are 
shown by symbols, indexed to each zone with zonal mean value of mineral abundance given in 
percent. The dashed lines on each variogram plot indicate the variance of the logarithm of 
mineral fraction within each mineralization zone. The variance line provides an indication of a 
reasonable variogram sill value assuming second-order stationarity. For most mineralization 
zones, the data variance does indeed provide a plausible variogram sill value. Zones represented 
by XRD values below the detection limit are indicated by a zone mean value of 0.0. The 
constant zero values in these zones produce variograms with constant zero values. 

For each mineralization zone of each mineral, the experimental variogram values were obtained 
for lag intervals with a minimum of 40 data pairs. Different minimum numbers of data pairs 
were attempted on this data set - forty were found to be the minimum number of data pairs 
needed to adequately reduce scatter in the experimental variogram values. Notice that depending 
on the mineral and zone, different numbers of experimental variogram values were computed 
because of the differences in numbers of data pairs. For example, for the mineralization zones of 
calcite having a mean values of 2.79%, 20.61%, and 8.89%, there are 16, 2, and 3 variogram 
values, respectively. These differences reflect the fact that the mineralization zone of calcite 
with a 2.79% mean value is much more abundant than the other zones. 
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Another important feature in the variograms is that variance of the loglo mineral abundances is 
often different in the different mineralization zones. For example, the variance of calcite within 
the zone of 2.79% mean value is about 0.15, whereas the variance is between 0.01 and 0.02 for 
the other zones with non-zero mean values. Because these variances are computed from the 
logarithm of the mineral abundances, the variance is scaled relative to the magnitude. 
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Figure 5.2 Experimental variograms for loglo mineral fraction of calcite, hematite, mica, 
smectite, and clinoptilolite mineralization zones for XRD data from ER-5-4, UE-Sn, ER-5-3 and 
U-1 1 g-1. Zonal variances are shown by dashed lines for reference. 
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Figure 5.3 Experimental variograms for loglo mineral fraction of glass, cristobalite, opal, quartz, 
tridymite, and hornblende mineralization zones for XRD data from ER-5-4, UE-5n, ER-5-3 and 
U-119-1. Zonal variances are shown by dashed lines for reference. 
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Figure 5.4 Experimental variograms for loglo mineral fraction of dolomite, kaolinite, analcime, 
mordenite, and clinopyroxene mineralization zones for XRD data from ER-5-4, UE-5n, ER-5-3 
and U-1 1 g-1. Zonal variances are shown by dashed lines for reference. 
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Figure 5.5 Experimental variograms of loglo mineral fraction in orthoclase, sanidine, albite, 
bytownite, and anorthite mineralization zones for XRD data from ER-5-4, UE-5n, ER-5-3 and 
U-1 1 g-1. Zonal variances are shown by dashed lines for reference. 
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5.2.2 Interpretation 

The most important result of the variogram analysis of mineral abundances within the 
mineralization zones is that, with the exception of hematite-bearing zone, the spatial variation of 
mineral abundances can be plausibly modeled by a variogram having pure nugget (no spatial 
correlation). Thus, with the exception of hematite, spatial variation within the mineralization 
zones for all of the sorbing minerals is essentially random down to scales of less than one meter. 
The variograms indicate that some non-sorbing minerals such as kaolinite (0.42%) and 
hornblende (0.28% mean) may exhibit some spatial continuity within zones, however the data 
are insufficient to confirm this. The major component of spatial variation of the mineral 
abundance is attributed to different mineralization zones, which are related to different alluvial 
layers identified by Warren et al. (2002). Therefore, the issue of vertical and lateral spatial 
variation of mineral abundances, which is of concern to development of CAU and HST scale 
transport models in Frenchman Flat, may be best addressed by considering the three-dimensional 
geometry of chemofacies or alluvial layers. 

For hematite, vertical spatial variability of loglo hematite abundance within hematite-bearing 
zones (about 8 1 % of the alluvium sampled) appears to have a correlation range of about 5 m. 
Figure 5.6 shows a variogram model fit to the experimental variogram values (minimum of 20 
data pairs) for the hematite-bearing zone. The variogram model parameters are 

nugget =O.O 

sill = 0.0178 

range=5.0m 

structure = exponential 

such that the variogram model is formulated by: 

y(h,  1 = 0.0178 x 1.0 - exp - [ [ 2 j] 
where h. is the lag in the vertical (z) direction. This variogram model could be used to 
characterize vertical spatial variability of hematite within hematite-bearing zones. However, 
explicit consideration of vertical spatial variation of hematite within mineralization zones would 
require numerical grid spacing of 5m or less in the vertical direction. 
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Figure 5.6 Variogram model fit to the experimental variogram in the vertical 
direction for the loglo fraction of hematite in the hematite-bearing mineralization 
zone. 

5.3 Application to Kd 

In the application of variogram analysis to loglo[Kd], the combined effect of spatial variability of 
mineral abundances within and between mineralization zones is lumped together. Conceivably, 
Kd could be treated as a random field in CAU or HST scale transport models in Frenchman Flat. 
This approach might be used to model the spatial distribution of Kd directly as an alternative to 
modeling the spatial distribution of mineral abundances, then translating the mineral abundances 
to Kds. To implement this direct Kd approach, plausible random field models of Kd will need to 
be developed. Geostatistical simulation approaches, such as sequential Gaussian simulation 
parameterized by 2- or 3-D variogram models (Deutsch and Journel, 1998), could provide 
plausible random field models of Kd, as implemented in Chapter 6. 

As shown in Chapter 4, the Kds computed for the radionuclides Cs, Am, Eu, Sm, Np, U, and Pu 
tend to exhibit a log-normal distribution. The exceptions are Ca and Sr, which exhibit bi-modal 
distributions of 10glo[Kd]. The depth profiles generally exhibit little vertical variation in the 
mean. Some lateral variations in mean Kds between wells in central and northern Frenchman 
were evident for the radionuclides Ca, Cs, and Sr. These lateral variations in Kd were attributed 
to lateral variations in clinoptilolite and mica abundance between central and northern 
Frenchman Flat. Based on these data, it may be plausible to assume that stationary Kd random 
field models could be developed for the radionuclides Am, Eu, Sm, Np, U, and Pu for CAU or 
HST scale transport models in Frenchman Flat. For Ca, Cs, and Sr, some consideration of lateral 
nonstationarity in mean Kd in Frenchman Flat may need to be integrated into the development of 
.CAU or HST scale transport models. In either case, three-dimensional variogram models could 
be used to characterize three-dimensional spatial variability of log lo[&]. 
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The excellent vertical sampling afforded by the XRD data from drillholes ER-5-4, UE-5x1, 
ER-5-3, and U-1 lg-1 enables estimation of experimental variograms of loglo [&I in the vertical 
direction. Vertical variogram models for spatial variation of loglo [&I can be developed. At this 
time, quantification of lateral spatial variability remains the major difficulty in development of 
three-dimensional variogram models for log 10 [&I. 

5.3.1 Vertical Variogram Analysis of logl~[Kd] 

Figure 5.7 shows variogram values of loglo[&] computed from the composite of XRD data from 
drillholes ER-5-4, UE-Sn, ER-5-3, and U-1 lg-1. The experimental values are indicated by 
symbols, and fitted variogram models are indicated by solid lines of matching color. Different 
variogram structures are evident for different radionuclides. The sill of each variogram model is 
matched to the experimental variogram values of 300 m or less. The variogram values at lags 
greater than 300 m begin to suffer from the “U2” effect, where data pairs with lags greater than 
one half of the spatial length of the data set are adversely affected by extreme values. 

The vertical variograms of loglo [Kd] for Cs and U appear to lack spatial correlation, evident by 
experimental variogram values that oscillate near the sill for all lags. Nevertheless, a small 
degree of spatial continuity is incorporated in the model. The vertical variograms for 10gl0[&] 
of Am, Eu, Sm, Np, and Pu all show similar structure, with about 30-45% of the spatial variation 
attributed to micro-scale variability, and the remaining subregional-scale variability attributed to 
a exponential structure with a range of correlation of about 300 to 400 m. The subregional-scale 
variability is attributed to different mineralization zones or alluvial layers. The radionuclides Ca 
and Sr exhibit much larger magnitude of spatial variation dominated by subregional-scale spatial 
variability of loglo [&I. The vertical variogram structures for loglo[Kd]of Ca and Sr are largely 
attributed to variations of clinoptilolite abundance in different mineralization zones. The nugget 
component all of these variograms is directly related to micro-scale variability within the 
mineralization zones. Table 5.1 shows the loglo[Kd] vertical variogram model parameters used 
in Figure 5.7. Certainly other variogram model parameters, including variogram structures such 
as the spherical function, could be proposed to fit the experimental variograms. The variogram 
model parameters are given as plausible values to consider in developing stochastic realizations 
of log lo[&]. Certainly other model interpretations of the experimental variograms could be 
made. 
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Table 5.1 Parameters for vertical variogram models of loglo[&] shown in 
Figure 5.7 for radionuclides Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu. 

Radionuclide 
Range 

Ca 

c s  
Sr 

Am 

ELI 

Sm 

NP 

U 

Nugget Sill 
0.015 0.105 

0.040 0.040 
0.015 0.12 

0.016 0.052 

0.020 0.065 

0.028 0.087 

0.020 0.065 

0.023 0.027 

0.018 0.043 

0.017 0.042 

0.016 0.041 

150 

0 

150 

300 

300 

300 

400 

300 

300 

300 

300 

Vertical Variogram Model Equation 

y(hJ  = 0.015 + 0.09011 - exp(-&)] 

y(h,) = 0.015 + 0.105~1- exp(- &)J 
y(h,  ) = 0.0 16 + 0.03611 - exp(- &)] 
y(h,)  = 0.020 + 0.045b - exp(-&)] 

y(hJ = 0.020 + 0.04511- exp(-&)] 

y( hZ ) = 0.023 + 0.00411 - exp(- a)] 
y(h,)  = 0.018 + 0.043[1 - exp(- &)I 
y(h,)  = 0.017 + 0.042b - exp(- &)] 
y(hz) = 0.016 + 0.04111 - exp(- &)J 

y(h,) = 0.040 

y ( h Z )  = 0.028+0.059[1-exp(-&)] 
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Figure 5.7 Experimental and modeled vertical direction variograms of loglo [Kd for 
radionuclides Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu based on XRD mineral abundance 
data from drillholes ER-5-4, UE-5n1 ER-5-3, and U-1 1 g-1 in Frenchman Flat. 
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The issue of the bi-modal loglo [Kd] frequency distributions for Ca and Sr can be addressed by 
separating the Kds into two sub-populations - low and high - based on cutoff values of 300 
and 200 m u g  for Ca and Sr, respectively. Vertical spatial variability within the low and high Kd 

zones can be assessed by variogram analysis of the sub-populations of data defined by the cutoff 
values. Figure 5.8 shows vertical experimental and model variograms of Kd spatial variability of 
Ca and Sr within the low and high Kd zones. Table 5.2 shows the parameters of the variogram 
models in Figure 5.8. The sill values are much smaller than for the variogram models of the 
complete Ca and Sr Kd data because the spatial variability of Kd related to differences between 
low and high Kd is removed. The variograms for the high Kd zones exhibit a large nugget 
component of the variogram, indicating that spatial variability of Kd within the high Kd zones for 
Ca and Sr is dominated by micro-scale variability. The variograms for the low K d  zones exhibit 
more spatial continuity, indicating that subregional-scale spatial variations of Kd would exist 
within the low Kd zones. 
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Figure 5.8 Experimental and modeled vertical direction variograms of loglo [Kd for 
radionuclides Ca and Sr separated into low and high Kd zones based on 300 and 
200 mug  cutoffs, respectively. 
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Table 5.2 Parameters for vertical variogram models of loglo[Kd] shown in 
Figure 5.8 for low and high Kd zones or radionuclides Ca and Sr. 

Range 
Radionuclide Nugget Sill (m) Vertical Variogram Model Equation 
Ca - low Kd 0.007 0.026 400 y(h, ) = 0.007 + 0.019~1- exp(- A)] 
Ca - high Kd 0.029 0.042 400 y(h. ) = 0.029 + 0.042b - exp(- &)J 
Sr - low Kd 0.009 0.045 400 y(h,) = 0.009 + 0.045b - exp(-&)] 

Sr - high K d  0.021 0.035 400 y(h,) = 0.021 + 0.03511 - e x p ( - k ) J  

5.3.2 Lateral Spatial Variability of loglO[Kd] 

Three-dimensional stochastic realizations of Kd could be used to examine the effect of spatial 
variability of Kd on radionuclide transport. Generation of the realizations would require 
development of three-dimensional variograms of log lo[&]. The XRD mineral abundance data 
from drillholes ER-5-4, UE-Sn, ER-5-3, and U-1 lg-1 have provided an excellent foundation for 
evaluating vertical spatial variability of log lo[&]. However, the characterization of lateral 
spatial variability of Kd is more difficult to determine from drillhole data. 

In general, it is difficult to directly characterize lateral spatial variability of geologic attributes 
for several reasons: 

0 Drillholes are vertical and, thus, preferentially sample the vertical direction. 

Heterogeneity within geologic formations, such as alluvial deposits, is controlled by 
irregular depositional processes that are difficult to track laterally. 

0 The “lateral direction” is not necessarily horizontal or parallel to the ground surface. 

If the spatial variability is strongly anisotropic between the lateral and vertical 
directions, small dip angles compound the difficulty of correlating geologic attributes 
between drillholes. 

Of the XRD data from drillholes ER-5-4, UE-Sn, ER-5-3, and U-1 lg-1, only the data from 
ER-5-3 and UE-5n offer a possible opportunity to quantitatively analyze lateral spatial 
variability of Kd, and only for a lag of 477 m (the distance between drillholes ER-5-4 and 
UE-5n). Between these two drillholes, the mineral abundances do appear to show correlation 
(see Chapter 3). Although drillhole ER-5-3 has much data, the mineral abundances are clearly 
different from ER-5-4. Drillhole ER-5-3 appears to be located beyond the lateral range of 
correlation of loglo[&] with respect to drillhole ER-5-4. Drillhole U-1 lg-1 has only three data, 
which are inadequate to estimate a variogram value. From visual inspection of depth profiles of 
Iogl~[Kd] between drillholes ER-5-4, UE-Sn, and ER-5-3 in Figure 4.12, it appears that a 
reasonable estimate of the range of lateral correlation of loglo[&] in Frenchman Flat would be 
between 477 m and 5585 m (the distances from drillhole ER-5-4 to drillholes UE-5n and 
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ER-5-3). Certainly other information on the three-dimensional geometry of alluvial layers 
would be useful for estimating lateral spatial continuity of & for those radionuclides that 
appear sensitive to the spatial distribution of mineralization zones or alluvial layers. 

Figure 5.9 shows experimental variogram values for log lo[&] for different radionuclides 
computed for a lateral lag of 477 m from the XRD data from drillholes ER-5-4 and UE-Sn. The 
lag pairs were vertically shifted to account for difference in the depth of the mineralization zone 
with high clinoptilolite abundance between 3 10-340 m depth in ER-5-4 and about 340-370 
depth in UE-5n. The lateral variogram models shown were constructed by assuming the same 
nugget and sill values and exponential structure used for the vertical variogram models, but 
with adjusted range values, as shown in Table 5.3. The range was adjusted so that the 
variogram models honor the experimental variogram values for all radionuclides but Cs and U, 
which exhibit mostly micro-scale variability. The fitted range values vary from 1350 to 3900 
m, which appears consistent with the appearance of lateral spatial correlation of mineral 
abundance between drillholes spaced hundreds of meters apart and lack of spatial correlation 
between drillholes spaced over 5 km apart. Comparison of vertical and lateral range values 
indicates 1ateral:vertical anisotropy ratios ranging between 4.5: 1 to 13: 1. Considering the 
difficulties in quantifying lateral spatial correlation listed above, these ratios could be greater. 
The lateral-direction variogram model range parameters for log lo[&] for the radionuclides 
shown in Table 5.3 are uncertain because of the sparse data on lateral continuity of mineral 
abundance. 

Warren et al. (2002) suggest that the Frenchman Flat alluvial basin deposits consist of 
coalesced fans having three dominant source areas - Rock Valley, Massachussets Mountain, 
and the Ranger Mountains. Lateral continuity may be easier to track near the source areas and 
more difficult to track in distal areas where fans are more interfingered. Lateral continuity of 
log,o[&] would not necessarily be isotropic. More lateral continuity could be expected in the 
downslope direction of the ancient alluvial fan surfaces. In any case, lateral continuity of 
loglo[&] is most likely dominated by the lateral continuity of mineralization zones or alluvial 
layers. Because the alluvial layers represent different episodes of alluvial fan deposition, some 
lateral gradation of grain size distribution and mineralogy should be expected. 
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Figure 5.9 Experimental and modeled lateral direction variograms of loglo [Kd] for radionuclides 
Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu based on XRD mineral abundance data from drillholes 
ER-5-4, UE-5n, ER-5-3, and U-1 1 g-1 in Frenchman Flat. 
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Table 5.3 Parameters for lateral variogram models of loglo[&] shown in 
Figure 5.9 for radionuclides Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu. 

Range 
Radionuclide Nugget Sill (m) Lateral Variogram Model Equation 
Ca 

c s  

Sr 

Am 

Eu 

Sm 

NP 

U 

h( 02=-5) 

Pu(02=-lO) 

h( O2=- 15) 

0.015 

0.040 

0.015 

0.016 

0.020 

0.028 

0.020 

0.023 

0.018 

0.017 

0.016 

0.105 1750 

0.040 0 

0.12 1800 

0.052 3500 

0.065 2400 

0.087 1350 

0.065 1750 

0.027 3000 

0.043 3900 

0.042 3900 

0.041 3900 

y(h,)  = 0.015+0.090~ -exp(-*)] 

y(h,) = 0.040 

y(h,) = 0.015 + 0.105b - exp(- A)] 
y(h,) = 0.016+0.036[1-exp(-~) ]  

y(h,)  = 0.020 + 0.04511 - exp(- &)I 
y(h,) = 0.028 + 0.059[1- exp(- a)] 
y(h , )  = 0.020+0.04511-exp(-&)] 

y(h,) = 0.023 + 0.00411- exp(- a)] 
y(h,) = 0.018 + 0.04311 - exp(- A)] 
y(h,) = 0.017 + 0.042b - e x p ( - k ) ]  

y(h,) = 0.016+0.041[1-exp(-~)]  

5.3.3 Interpretation 

In application to the loglo[&] values derived in Chapter 4, vertical and lateral variogram models 
indicate that spatial variation of Kd is attributed in part to micro-scale variability and in part to 
subregional-scale spatial variability related to mineralization zones or alluvial layers. For Cs and 
U, most of the spatial variability is attributed to micro-scale variability. For Am, Eu, Sm, Np, 
and h, about 30-45% of the spatial variability of Kd is related to micro-scale variability. The 
remaining component of spatial variability has a vertical range of correlation between 200 and 
400 m, indicating sensitivity to different mineralization zones or alluvial layers. According to 
the lateral variogram analysis, the lateral range of correlation of Kd ranges may be between 1350 
m and 3900 m for different radionuclides. These ranges are consistent with the observations that 
mineral abundances appear correlated between the drillhole pairs ER-5-4 and UE-5n and the 
drillhole pair ER-5-3 and U-1 lg-1, but not the drillhole pair ER-5-4 and ER-5-3. Ca and Sr 
exhibit the largest spatial variability, most of which can be attributed to variations in 
clinoptilolite abundance between different mineralization zones or alluvial layers. Considering 

5-18 



that the histograms of loglo[Kd] for Ca and Sr are bi-modal, unlike the log-normal Kd 

distributions for other radionuclides, the spatial variability of Kd for Ca and Sr may need to be 
analyzed by categorizing Kd into high and low values. 

5.4 Application of Variogram Models to Reactive Transport Models 

Variogram models of mineral abundance and Kd could be applied to reactive transport models in 
two ways, which are described in further detail in Chapter 6: 

Zones or “layers” having similar mineral abundances could be identified, and a 
variogram model could be used to characterize the spatial variability of mineral 
abundance of each sorbing mineral within each zone. The degree of variability of 
mineral abundance within a zone would depend on the magnitude of the range of 
correlation relative to the resolution or grid-block size of the transport model. Based 
on the interpretation of the XRD data in this report, hematite is the only sorbing 
mineral that exhibits measurable spatial correlation within a zone, so it may be 
plausible to assume constant Kds within each layer for most radionuclides. The 
spatial correlation of hematite might be considered in a reactive transport model with 
a grid-block size of 5 m or less. The lateral continuity of the zones or layers could be 
inferred from interpretations of 3-D geometry of the alluvial layers. 

Variogram models of Kd could be used to generate random fields or stochastic 
“realizations” that explicitly account for spatial variability of K d throughout the 
alluvial section (including different mineralization zones or alluvial layers). 
Estimates of lateral spatial variability could possibly be inferred from variogram 
analysis of Kds from closely spaced drillholes. The concept of treating Kd as a 
spatially correlated random field has been previously applied in hydrology (e.g., 
Garabedian et al., 1988; Tompson, 1993; Tompson et al., 1996; Miralles-Wilhelm and 
Gelhar, 1996; Abulaban and Neiber, 2000; Pawloski et al., 2000; Painter et al., 2001). 
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6 Incorporation of Mineralogic Considerations into 
Reactive Transport Modeling 

The purpose of analyzing mineral abundances in alluvium from drillholes in Frenchman Flat is to 
characterize the spatial distribution of radionuclide sorbing minerals, which needs to be 
considered in CAU and HST modeling of radionuclide transport. Two reactive transport 
modeling approaches have been used to relate radionuclide sorbing mineral abundance to 
radionuclide retardation: 

The mechanistic approach, where aqueous speciation, combined with surface 
complexation and ion exchange sorption reactions and sorbing mineral characteristics 
are explicitly used to evaluate radionuclide retardation, as implemented in the HST 
transient streamline simulations for the Cheshire test based on the CRUNCH code 
(Pawloski et al, 2001).10 

The Kd approach, where the mechanistic information for each radionuclide-mineral 
pair under specific aqueous conditions is reduced to a distribution coefficient (Kd). A 
radionuclide Kd in an alluvium of mixed mineralogy can then be calculated using the 
component additivity approach (see Chapter 4). This approach was also applied in 
the HST particle simulations for the Cheshire test (Pawloski et al., 2001). 

In regard to addressing spatial variability of radionuclide retardation, two plausible approaches 
are: 

The facies-based approach, where the spatial distribution of radionuclide retardation 
is defined according to a combination of geologic interpretation in a three- 
dimensional geometric framework of “alluvial layers” or “chemofacies” to categorize 
rocks by distinctive mineralogic and lithologic characteristics. Within each rock 
category or “facies,” the hydraulic and reactive transport properties may be 
considered constant or described by statistical properties. This approach may also 
require an evaluation of the spatial distribution of sorbing and non-sorbing minerals 
within each of the mineralization zones, chemofacies, or alluvial layers. If the 
categorization is solely concerned with the spatial distribution of sorbing minerals, 
the categories are, in effect, chemofacies, as described in Section 3.5. The mineral 
distribution parameters within a chemofacies can then be used by either the 
mechanistic or Kd approaches to evaluate retardation for each radionuclide. 

I o  In HST simulations, dissolution and precipitation reactions were also included in the mechanistic model. These 
reactions are not discussed in this report. 

defined as one “layer” (mafic poor Calico Hills lava) and only an evaluation of heterogeneous mineral distribution 
within this “layer” was necessary. 

In the Cheshire HST simulations. the chemofacies approach was used. However, the entire modeling domain was I 1  
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0 The Kd “random field” approach, where the conceptual model for the spatial 
distribution of radionuclide retardation treats Kd as a collection of random variables 
positioned in space with spatial correlation defined by a variogram model. This 
approach requires translating sorbing mineral abundances into Kd for individual 
radionuclides using the component additivity concept described in Chapter 4. In this 
approach, Kd distribution information replaces mineral distribution information. The 
pattern of spatial variability of Kd is described by a random field model with 
parameters that are specific to each radionuclide. 

In both the chemofacies and Kd random field approaches, grid block sizes are finite, requiring 
assumptions about the effective or “average” mineral abundances and radionuclide retardation 
over finite volumes. These effective values may depend on grid block size. The analysis of 
mineral abundance data in this report indicates that spatial dependencies in mineral abundance 
and Kd do exist within and between zones or “alluvial layers’’ in Frenchman Flat. These spatial 
heterogeneities of radionuclide sorbing minerals may need to be considered in both CAU and 
HST scale models. 

If a mechanistic approach is used to predict radionuclide transport, a chemofacies approach is 
more practical for describing spatial variations of sorbing mineral abundance. This is because 
the mechanistic approach directly relies on a description of the radionuclide sorbing mineral 
abundances. Based on the analysis in Chapter 3, the major spatial variations of sorbing mineral 
abundance are zonal. However, if a Kd approach is used to predict radionuclide retardation, 
either a chemofacies or a Kd random field approach may be practical. The practicality and 
applicability of either approach depends on geologic interpretation, model resolution and scale, 
data availability, and appropriateness to site conditions. 

6.1 Scaling Issues 

The mineral abundance data from drillholes ER-5-4, UE-Sn, and ER-5-3, and U-1 lg-1 were 
obtained from core samples, which are much smaller than typical grid block sizes in numerical 
models. Considering differences in mineral abundance in sidewall splits from sidewall cores and 
the variogram analysis of Chapter 5, much small or “micro” scale variability is expected. 
Therefore, some assumptions must be made on scaling data to effective model parameters. 

Garabedian et al. (1988) and Gelhar (1993) suggest that the effective retardation coefficient, 
(&), is an arithmetic average of local point values. Pawloski et al. (2000) appear to confirm the 
validity of the relationship in reactive transport simulations of radionuclide transport for the 
Cambric test. 

In transport simulations of Np for alluvium near Yucca Mountain, NTS, Painter et ai. (2001) 
assumed an effective Kd based on the geometric mean of a log-normal K d  distribution. In these 
Np transport simulations, the effective Kd yielded similar breakthrough behavior (with slightly 
delayed initial breakthrough) compared to a random field assumption with a log-normal 
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distribution of Kd. However, the point was made that these modeling results pertained only to 
Np for the specific statistical model used. 

Based on the results of univariate statistical analysis in Chapter 4 and variogram analysis in 
Chapter 5, chemofacies and random field approaches are described below as plausible means for 
addressing spatial variability of Kd in Frenchman Flat. 

6.2 The Chemofacies Approach 

The variogram analysis in application to mineral abundance (Section 5.2) indicated that spatial 
variation of the abundance of sorbing and non-sorbing minerals within mineralization zones 
(which partly correspond to alluvial layers as discussed in Section 3.5) was largely attributed to 
micro-scale variability. Assuming arithmetic averaging of mineral abundance within zones, 
most of the spatial variation of mineral abundance in Frenchman Flat is attributable to the 
different mineralization zones or alluvial layers. Therefore, consideration of heterogeneity of 
sorbing mineral abundance in Frenchman Flat based on a chemofacies approach could be 
accomplished by including layers or zones with different sorbing mineral abundances. A 
comparison of the alluvial layering interpretation developed by Warren et al. (2002) and a 
chemofacies interpretation was described in Section 3.5 

An interpretation of the three-dimensional geometry of the alluvial layers in Frenchman Flat 
could provide a framework for developing a model of spatial variation of sorbing mineral 
abundances. Based on our chemofacies interpretations, much of the geometric structure of 
chemofacies is directly associated with the alluvial layers. However, some chemofacies may be 
recognized as sub-units within the alluvial layers, such as zones with distinctively different 
abundances of calcite, hematite, and smectite recognized within alluvial layers identified in 
ER-5-4. Other chemofacies may be composites of alluvial layers that have been distinguished 
based on textural or chemical differences not examined in this study. Abrupt lateral changes, as 
observed in differences between ER-5-4 and ER-5-3, may reflect complexity of alluvial fan 
deposition combined with different source areas. Importantly, some depth intervals, such as 
between 780 and 900 m depth in ER-5-4, clearly consist of complex interfingerings of lithologies 
with different mineral abundances, which may need to be explicitly considered in development 
of high-resolution HST scale models. In application to CAU models, interfingering may need to 
accounted for by scaled effective properties. Comparison of chemofacies identified in ER-5-4 
and ER-5-3 indicates that some chemofacies might exhibit lateral gradations of sorbing mineral 
abundances, which may need to be considered in development of either HST or CAU scale 
models. 

6.3 Kd Approach 

In the K d  approach to modeling radionuclide transport, the retardation factor, Rd, linearly scales 
the transport velocity. Rd is related to Kd by 
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where n is porosity and ps is solid density of the porous media. Different radionuclides will have 
different Kd factors that depend on the abundances of sorbing minerals, as shown in Section 
4.1.3. The spatial distribution of Kd for each radionuclide was examined based on variogram 
analyses in Section 5.3. 

6.3.1 Zonal Approaches 

Log-normal distributions of Kd were evident for the radionuclides Am, Cs, Eu, Np, Pu, Sm, and 
U (see Section 4.2). For these radionuclides, it is conceivable that Frenchman Flat alluvium 
could be treated in a large-scale transport model as one zone having an effective Kd based on the 
arithmetic mean, geometric mean, or another volumetric average. The validity of using a single 
effective Kd throughout a model domain would largely depend on the scale, location, and desired 
resolution of the simulations. The use of single effective Kds could be tested by comparing 
simulations of transport behavior with or without spatially variable Kd and permeability (e.g., 
Painter et al., 2001). 

For the radionuclides Ca and Sr, the log-transformed frequency distributions of Kd are clearly bi- 
modal. As indicated in section 4.1.3, K d S  for Ca and Sr strongly depend on clinoptilolite 
abundance. The log-scale histograms shown in Figures 4.2 and 4.10 indicate that cutoff values 
of Kd at approximately 300 and 200 m u g  for Ca and Sr, respectively, separate the Kds into two 
zones of relatively low Kd and high Kd. These histograms also indicate that high Kd zones for Ca 
and Sr are prevalent in northern Frenchman Flat - as evident in ER-5-3 and U-1 lg-1 - and 
low Kd zones for Ca and Sr are prevalent in southern Frenchman Flat - as evident in ER-5-4 
and UE-5n. Therefore, the spatial distribution of Kd throughout Frenchman Flat largely depends 
on the spatial locations of these relatively high and low Kd zones. 

To illustrate this concept, the mineral abundance data in ER-5-3 and ER-5-4 were categorized 
into low and high Kd based on 300 and 200 m u g  cutoffs for Ca and Sr. Categorical 
geostatistical models were developed to characterize the vertical spatial variation of the low and 
high Kd zones for both Ca and Sr using two-dimensional Markov chains (Carle and Fogg, 1997). 
For a two-category Markov chain model, the only parameters needed are the proportions and 
mean lengths in the vertical and lateral directions for one of the two categories (the high K d  

category was chosen). The proportions were taken from the composite of the ER-5-4, UE-Sn, 
ER-5-3, and U-1 lg-1 mineral abundance data. The vertical mean lengths were inferred from 
vertical transition probability measurements (Carle and Fogg, 1996). The lateral mean lengths 
were estimated at 2000 m, based on strong correlation of mineral abundances in ER-5-4 and 
UE-5n (477 m apart) and lack of correlation between ER-5-4 and ER-5-3 (5585 m apart). 
Geostatistical realizations of the low and high zones could then be generated based on the 
Markov chain model. Figure 6.1 shows realizations of low Kd and high Kd zones for Ca and Sr 
between ER-5-4 and ER-5-3. The data from ER-5-4 and ER-5-3 are used to condition the 
realizations. These realizations yield a geologically plausible model of zonal variations of Kd 
within Frenchman Flat with patterns of heterogeneity related to different episodes of alluvial fan 
deposition. 
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Figure 6.1 Categorical realizations of “low KT and “high Kd)) zones for Ca and Sr. Conditioning 
of realizations with data from drillholes ER-5-4 and ER-5-3 is indicated by black (low Kd) and 
white (high Kd). 
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6.3.2 Gaussian Random Field Approaches 

The Gaussian random field is the most common stochastic conceptual model for considering 
spatial variation of Kd for reactive transport modeling in hydrology (Garabedian et al., 1988; 
Tompson (1993); Tompson et al. (1996); Miralles-Wilhelm and Gelhar, 1996; Abulaban and 
Neiber, 2000; Pawloski et al., 2000; Painter et al., 2001). In particular, a log-normal distribution 
and exponentially decaying spatial covariance of Kd is typically assumed. In some cases, a 
negative cross-correlation with permeability is assumed. 

In Section 5.3, a combination of nugget and exponential variogram model structures were found 
to provide plausible fits to the experimental vertical variograms of K d  for all radionuclides. 
Assuming second-order stationarity, these variogram models can be directly converted to 
exponentially decaying spatial covariance models. The nugget structure is attributed to micro- 
scale variability that may either be explicitly included in the random field model or folded into 
the average or effective Kds. 

To illustrate the random field approach, realizations of K d  for each radionuclide were generated 
using the code “sgsim” from the Geostatistical Software Library (Deutsch and Journel, 1998) 
based on the variogram models developed in Section 5.3. Single realizations of loglo[Kd] for 
each radionuclide are shown in Figures 6.2 and 6.3. These realizations extend 1500 m vertically 
and 15 km laterally, reflecting possible spatial distributions of Kd over a large cross-sectional 
area of Frenchman Flat. The differences in the spatial structure of Kd for different radionuclides 
are attributed to differences in variogram model structure. For example, Am shows spatially 
correlated regions of relatively low or high Kd, whereas Cs shows only random variation. The 
variogram model for Am has pronounced spatial correlation, whereas the variogram model for 
Cs is pure nugget without spatial correlation, which yields only small-scale variability. 

As discussed earlier, the frequency distributions for Ca and Sr were bi-modal and thus do not 
conform to the Gaussian random field conceptual model. The realizations shown in Figures 6.2 
and 6.3 for Ca and Sr were nonetheless constructed under the assumption of a Gaussian random 
field. The spatial variation of Kd in these realizations exhibits the largest variations in magnitude 
compared to other radionuclides, reflecting the high sill parameters of the fitted variogram 
models. A problem with using a Gaussian random field model for Ca and Sr is that the 
realizations produce a normal distribution of loglo[&] values, which will contain an excess of 
intermediate values instead of two modes of low Kd and high Kd. 
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Figure 6.2 Gaussian random field realizations of spatial variability of Kd for Am, Ca, Cs, Eu, 
and Np. 
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Figure 6.3 Gaussian random field realizations of spatial variability of Kd for Pu(O2=-5), Pu(02=- 
lo),  Pu(O2=-15), Sm, Sr, and U. 
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6.3.3 Hybrid Approaches 

Alternatively, zonal and Gaussian random field geostatistical approaches can be combined to 
address the bi-modal Kd distributions evident for Ca and Sr. Gaussian random fields can be used 
to conceptualize spatial variation of Kd within the low and high Kd zones. Figure 6.4 shows 
realizations of Kd of Ca and Sr with Gaussian random field spatial variation within the low Kd 

and high Kd zones. The Gaussian random fields are based on the variogram models for spatial 
variation of Kd for Ca and Sr within low Kd and high Kd zones shown in Figure 5.8. The zonal 
random fields shown in Figure 6.1 can be used as templates for choosing Kds from either the 
realization for low or high K d  zones. Figure 6.5 illustrates the result of a combination of the 
zonal and Gaussian random field approaches. The resulting realizations reflect three scales of 
spatial variability: micro, zonal, and within-zone. 
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Figure 6.5 Realizations of spatial variability of Kdfor Ca and Sr generated by combining both 
zonal and Gaussian random field geostatistical models. The zonal realizations (in grayshade) 
are shown above the Kd realizations (in color). 
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6.3.4 Application to CAU Models 

Grid block size for CAU models will certainly be too large to consider the high-resolution spatial 
variation of Kd shown in Figures 6.2 to 6.5. Single effective Kds could be plausibly assumed in 
CAU models for radionuclides that exhibit mostly micro-scale spatial variability - Cs and U, in 
particular. 

For other radionuclides that exhibit significant spatial variability, measurable spatial correlation, 
and log normal distributions - Am, Eu, Np, Pu, Sm - several approaches could be considered: 

Assume effective K d S  based on arithmetic or geometric mean values. 

Assume arithmetic scale averaging of Kd and generate Gaussian random field models 
at larger grid block sizes. However, if the grid block size is larger than the range of 
correlation, this approach will have no effect compared to assuming a single effective 
value. 

Derive effective Kds from numerical modeling experiments having high-resolution 
spatial variation of Kd. Note that such experiments would need to address the issue of 
spatial cross-correlation of Kd with permeability. 

Assume that spatial variations of Kd are primarily related to chemofacies or alluvial 
layers with distinctive mineral abundances as identified, for example, in Section 3.5 
or by Warren et al. (2002). Base K d S  on average mineral abundances for the 
chemofacies or alluvial layers. This approach would require development of a three- 
dimensional model of the alluvial layers and important chemofacies within 
Frenchman Flat. 

For radionuclides that exhibit strong dependence on clinoptilolite abundance - Ca and Sr, in 
particular - CAU scale models in Frenchman Flat will need to consider location dependent KdS. 
The difference in average Kd between the low Kd and high Kd zones is about a factor of five for 
both Ca and Sr. For these magnitudes of Kd, retardation coefficients are nearly proportional to 
Kd, producing an approximate factor of 5 difference in the retardation coefficients. Such zonal 
variations in K d  for Ca and Sr could be also be addressed in several ways: 

Using a three-dimensional model of the alluvial layers in Frenchman Flat 
(chemofacies approach). 

Apply a categorical geostatistical approach as illustrated in Figure 6.1, but at a 
coarser scale in three dimensions. 

Interpolate Kds for Ca and Sr throughout Frenchman Flat to account for large-scale 
trends, such as generally higher Kds in northern Frenchman Flat relative to central 
Frenchman Flat. 
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6.3.5 Application to HST Models 

Grid block sizes for HST-scale models are much smaller than for CAU-scale models - as small 
as 2 m for HST modeling of the Cambric test in Frenchman Flat (Pawloski et al., 2000). 
Therefore, HST models can certainly resolve the subregional-scale spatial variation of Kd evident 
from the mineral abundance data examined in this report. 

HST models can be expected to extend to several hundred meters in the vertical direction. 
Therefore, a HST model will usually span several chemofacies or alluvial layers. Several 
distinctive layers were in fact recognized in HST modeling of the Cambric test based on 
permeability data and lithologic descriptions (Pawloski et al., 2000). The examination of mineral 
abundance data in this report certainly suggests that interpretations of chemofacies and alluvial 
layers can account for much of the spatial variation of Kd. 

Given that the spatial variation of Kd for several radionuclides is expected to primarily relate to 
different chemofacies or alluvial layers, HST models should attempt to identify and incorporate 
zonal or layered heterogeneity of Kd. Smaller-scale heterogeneity of Kd expected within the 
zones or layers may be plausibly accounted for by effective Kds for each zone or layer. The 
examination of mineral abundances within zones in Chapter 3 indicated that spatial variability 
within zones is mostly related to micro-scale variability with correlation ranges of 1 m or less. 
The one exception was for hematite, which exhibited a vertical spatial correlation of about 5 m. 
However, this small-scale spatial variation of hematite may not have much impact to HST 
modeling. Hematite abundances are relatively low, and recent flow-through data have suggested 
that the effective influence of iron oxides in radionuclide retardation may be quite small (Zavarin 
et ai., 2002). 

Another consideration for HST models is that some of the alluvial layers appear to be situated in 
“transition zones” as described in Chapter 3. The transition zones can be attributed to portions of 
the alluvial sequence where alluvial deposits of different lithologies or source areas are 
interfingered. The transition zones could provide regions of most intense heterogeneity of both 
hydraulic and chemical properties. 

Alternatively, if the chemofacies or alluvial layers cannot be identified, the Gaussian random 
field or hybrid zonalhandom field approaches described in sections 6.2.4 and 6.2.5 could be 
applied to the HST models. The vertical variogram model parameters given in Tables 5.1, 5.2, 
and 5.3 could be applied at different model resolutions. Lateral variogram models parameters 
are more uncertain, but plausible correlation ranges would range between about 1000 to 5000 m. 
Given the strong sensitivity of Ca and Sr Kd to clinoptilolite abundance, the models of spatial 
variability for Kd of Ca and Sr would need to be customized to different locations in Frenchman 
Flat. Alternatively, a trend in Kds could be added to the Gaussian random field values. 
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7 Conclusions 

The overall goal of this study is to understand and characterize the spatial variation of sorbing 
minerals in Frenchman Flat alluvium using geostatistical techniques, with consideration for the 
potential impact on reactive transport of radionuclides. To achieve this goal requires an effort to 
ensure that plausible geostatistical models are used to characterize the spatial variation of 
minerals. The models must also be plausible from a geological perspective. Spatial variation of 
mineral abundance is caused not only by random processes but also by ordered geologic 
processes such as alluvial fan progradation, provenance, and in-situ alteration. Much of the 
spatial variation of sorbing mineral abundances is attributable to different “chemofacies” within 
which zonal mean abundances are relatively uniform. The chemofacies are, in large part, 
associated with the alluvial layers interpreted by Warren et al. (2002). 

The preliminary data analysis in Chapter 3 using depth profiles of mineral abundance, 
histograms, and probability plots revealed that mineral abundances typically exhibit micro-scale 
variability superposed on large-scale variability that occurs in zones with relatively constant 
mean mineral abundances. From a transport modeling perspective, the micro-scale variability, 
which occurs at scales of 1 m or less, can be practically addressed by use of effective properties. 
The larger-scale variability - referred to as “mineralization zones” - should be considered in 
HST models and may need to be addressed in CAU scale models for certain radionuclides. The 
sorbing minerals calcite, clinoptilolite, and hematite exhibit some zones where abundances are 
below detection limits. Mica and smectite appear to be ubiquitous. 

Comparison of depth profiles of mineral abundance between drillholes ER-5-4, ER-5-3, UE-Sn, 
U- 1 1 g- 1 indicates that mineralization zones are laterally continuous over scales greater than 
about 500 m and less than about 5000 m. Variations in thickness and attitude (e.g., dip and strike 
of bounding surfaces) of mineralizations zones or alluvial layers are uncertain. The major 
differences in sorbing mineral abundances in northern Frenchman Flat compared to central 
Frenchman Flat are: 

e Clinoptilolite is more abundant. 

e Mica is slightly less abundant at greater depth. 

Hematite is not present below a depth of 460 m. 

Calcite exhibits more extensive zones of high abundance. 

Smectite abundance is slightly lower at greater depths. 

Based on groupings of mineralization zones, nine chemofacies were interpreted in ER-5-4. The 
differences between chemofacies and alluvial layers are attributed to: 
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Some alluvial layers have distinctive abundances of non-sorbing minerals, but not 
sorbing minerals. 

Some chemofacies are subunits within an alluvial layer. 

0 Different alluvial layers with similar distributions of zonal mean abundances of 
sorbing minerals are interpreted as the same chemofacies. 

Nonetheless, the interpretation of alluvial layering by Warren et al. (2002) provides a useful 
geometric framework for modeling spatial variations of mineral abundance. Some zones exhibit 
complex interfingering of chemofacies. These transition zones also exhibit variations in 
lithology or source area (Warren et al., 2002) and, thus, are expected to be highly heterogeneous 
in both geochemical and hydraulic properties. Because the data examined in this study are 
located in central and northern Frenchman Flat, more consideration of southern alluvial source 
areas would be needed for basin-wide models. 

In an analysis of correlation between abundances of different minerals, several conclusions could 
be made: 

0 Within the sorbing minerals, clinoptilolite shows significant correlation with calcite 
(positive) and smectite (negative). 

Hematite shows no correlation with any other sorbing or non-sorbing minerals. 

All non-sorbing minerals except for kaolinite and sanidine show significant 
correlation with at least one sorbing mineral. 

The negative correlation between calcite and bytownite suggests that calcite may 
have formed as a result of weathering of the Ca-rich plagioclase. 

Considering that both CAU and HST scale models may employ Kds to simulate retardation of 
radionuclide transport, the XRD mineral abundances were also evaluated from a Kd perspective. 
In Chapter 4, K d  for Am, Ca, Cs, Eu, Np, Pu (at different oxygen fugacities), Sm, Sr, and U, is 
linked to mineral abundance by the component additivity approach (Zavarin, 2002). Using this 
approach, Kd can be geostatistically evaluated as a random variable that directly relates to 
radionuclide retardation parameters for particle tracking models. The following are conclusions 
on Kd variation in Frenchman Flat: 

Kd frequency distributions for Am, Eu, Np, Pu, Sm, and U appear to be log normal 
and exhibit no significant vertical or lateral variation. 

Compared to mineral abundance, spatial variation of Kd throughout Frenchman Flat is 
less zonal and appears to behave more like a spatially correlated random field, except 
for Ca and Sr. 
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0 Kd frequency distributions for Ca and Sr appear to be bi-modal and strongly 
dependent on clinoptilolite abundance, which varies significantly vertically and 
laterally. Large-scale heterogeneity of zeolite is a key issue for CAU and HST scale 
modeling of radionuclide transport. 

0 HST models may need to incorporate zonal variations of Kd based on alluvial layers 
or chemofacies. 

Chapter 5 applies the geostatistical technique of variogram analysis to quantitatively evaluate 
spatial variability of mineral abundance and Kd within Frenchman Flat alluvium. In application 
to mineral abundances within mineralization zones, the variogram analyses conclude: 

0 With the exception of hematite, the spatial variation of mineral abundance within 
mineralization zones is essentially random and has no spatial correlation. 

0 The major component of spatial variation of mineral abundance is attributed to 
different mineralization zones. 

In application to &, the following conclusions can be made: 

Spatial variation of Kd for Cs and U is essentially random with little or no spatial 
correlation. 

Approximately 30-45% of spatial variation of Kd for Am, Eu, Sm, Np, and Pu is 
attributed to micro-scale variability, and the remainder is attributed to subregional 
variability associated with mineralization zones or alluvial layers. 

The 163 data were adequate for development of vertical variogram models. 

Lateral variogram models could be developed by analyzing data from ER-5-4 and 
UE-Sn for one lag of 477 m and assuming the same nugget and sill values as used in 
the vertical variogram models. 

Comparison of vertical and lateral variogram range values indicates 1ateral:vertical 
anisotropy ratios ranging between 4.5:l and 13:l. Considering the difficulties in 
quantifying lateral spatial correlation, the ratios could be greater. 

Spatial variability of Kd for Ca and Sr is much greater than for other radionuclides 
because of the strong dependency on clinoptilolite abundance. 

Chapter 6 applies the overall geostatistical analysis of spatial variability conducted in Chapters 
3-5 to development of models of spatial variability of mineral abundance. The chemofacies 
approach is recommended for addressing spatial variability directly from sorbing mineral 
abundance, such as in application of a mechanistic reactive transport model. Using the 
component additivity approach, the chemofacies approach could also be applied to development 
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of effective &s for different radionuclides. The chemofacies approach could be integrated with 
three-dimensional interpretations of alluvial layer geometry to develop realistic models of spatial 
variation of mineral abundance or & within Frenchman Flat alluvium. A Kd random field 
approach is also suggested for simulation of subregional scale spatial variability of Kd within 
Frenchman Flat alluvium for Am, Eu, Sm, Np, and Pu. For Cs and U, it is conceivable that a 
single effective value of & could be assumed throughout most of Frenchman Rat. The 
variogram models for Kd developed in Chapter 5 can be applied to generation of stochastic 
realizations of Kd based on Gaussian random fields. For Ca and Sr, a hybrid stochastic 
simulation approach that combines categorical and Gaussian random field approaches is 
demonstrated to show how the bi-modality and lateral variation of the frequency distribution of 
Kd could be considered in simulation. Spatial variability within transition zones of interfingered 
lithologies presents the most complex situation of heterogeneity in both geochemical and 
hydraulic properties. Therefore, in high-resolution simulation of reactive transport of 
radionuclides, such as HST modeling, it will be important to determine if transition zones are 
present within the model domain. 

Based on the experience of this study’s work in analyzing spatial variability of sorbing mineral 
abundances and Kd, the effort to obtain core samples and apply XRD analysis to obtain high 
quality data with detailed spatial coverage has been rewarding. The manner in which sorbing 
minerals vary in the vertical direction within the Frenchman Flat is now confidently understood. 
Some uncertainty remains in identifying the actual scale of “microscale” variability of mineral 
concentrations, which appears to occur at scales less than 0.3 m for most minerals. Smaller 
scales of variability could be effectively evaluated by identification of mineral concentrations in 
“split” samples using the same method of analysis on many (e.g., 20+) core. Some uncertainty 
also remains as a result of applying only XRD data to our geostatistical analysis. Incorporation 
of SEM and petrographic data could provide greater confidence in the geostatistical model of 
sorbing mineral abundance. Some insights have been gained on lateral spatial variability, but 
considerable uncertainty remains on characterizing three-dimensional spatial variation. 
Nonetheless, the scant lateral correlation analysis that could be made from the data is 
encouraging in that plausible interpretations could be made, suggesting that future data collection 
would be useful for further constraining uncertainty in reactive transport simulations. 
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